• Title/Summary/Keyword: 공격 모델

Search Result 857, Processing Time 0.024 seconds

A Case Study of Object detection via Generated image Using deep learning model based on image generation (딥 러닝 기반 이미지 생성 모델을 활용한 객체 인식 사례 연구)

  • Dabin Kang;Jisoo Hong;Jaehong Kim;Minji Song;Dong-hwi Kim;Sang-hyo Park
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.203-206
    • /
    • 2022
  • 본 논문에서는 생성된 이미지에 대한 YOLO 모델의 객체 인식의 성능을 확인하고 사례를 연구하는 것을 목적으로 한다. 최근 영상 처리 기술이 발전함에 따라 적대적 공격의 위험성이 증가하고, 이로 인해 객체 인식의 성능이 현저히 떨어질 수 있는 문제가 발생하고 있다. 본 연구에서는 앞서 언급한 문제를 해결하기 위해 text-to-image 모델을 활용하여 기존에 존재하지 않는 새로운 이미지를 생성하고, 생성된 이미지에 대한 객체 인식을 사례 별로 연구한다. 총 8가지의 동물 카테고리로 분류한 후 객체 인식 성능을 확인한 결과 86.46%의 정확도로 바운딩 박스를 생성하였고, 동물에 대한 116개의 60.41%의 정확도를 보여주었다.

  • PDF

TAP-GAN: Enhanced Trajectory Privacy Based on ACGAN with Attention Mechanism (TAP-GAN: 어텐션 메커니즘이 적용된 ACGAN 기반의 경로 프라이버시 강화)

  • Ji Hwan Shin;Ye Ji Song;Jin Hyun Ahn;Taewhi Lee;Dong-Hyuk Im
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.522-524
    • /
    • 2023
  • 위치 기반 서비스(LBS)의 확산으로 다양한 분야에서 활용할 수 있는 많은 양의 경로 데이터가 생성되고 있다. 하지만 공격자가 경로 데이터를 통해 잠재적으로 사용자의 개인정보를 유추할 수 있다는 문제점이 존재한다. 따라서 경로 데이터의 프라이버시를 보존하며 유용성을 유지할 수 있는 GAN(Generative Adversarial Network)을 사용한 많은 연구가 진행되고 있다. 그러나 GAN은 생성된 결과물을 제어하지 못한다는 한계점을 가지고 있다. 본 논문에서는 ACGAN(Auxiliary classifier GAN)을 통해 생성된 결과물을 제어함으로써 경로 데이터의 민감한 정점을 숨기고, Attention mechanism을 결합하여 높은 유용성과 익명성을 제공하는 합성 경로 생성 모델인 TAP-GAN(Trajectory attention and protection-GAN)을 제안한다. 또한 모델의 성능을 입증하기 위해 유용성 및 익명성 실험을 진행하고, 선행 연구 모델과의 비교를 통해 TAP-GAN이 경로 데이터의 유용성을 보장하면서 사용자의 프라이버시를 효과적으로 보호할 수 있음을 확인하였다.

The Sub Authentication Method For Driver Using Driving Patterns (운전 패턴을 이용한 운전자 보조 인증방법)

  • Jeong, Jong-Myoung;Kang, Hyung Chul;Jo, Hyo Jin;Yoon, Ji Won;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.5
    • /
    • pp.919-929
    • /
    • 2013
  • Recently, a variety of IT technologies are applied to the vehicle. However, some vehicle-IT technologies without security considerations may cause security problems. Specially, some researches about a smart key system applied to automobiles for authentication show that the system is insecure from replay attacks and modification attacks using a wireless signal of the smart key. Thus, in this paper, we propose an authentication method for the driver by using driving patterns. Nowadays, we can obtain driving patterns using the In-vehicle network data. In our authentication model, we make driving ppatterns of car owner using standard normal distribution and apply these patterns to driver authentication. To validate our model, we perform an k-fold cross validation test using In-vehicle network data and obtain the result(true positive rate 0.7/false positive rate is 0.35). Considering to our result, it turns out that our model is more secure than existing 'what you have' authentication models such as the smart key if the authentication result is sent to the car owner through mobile networks.

A Security Model Analysis Adopt to Authentication State Information in IPTV Environment (IPTV 환경에서 가입자의 인증 상태정보를 이용한 인증보안 모델 설계)

  • Jeong, Yoon-Su;Jung, Yoon-Sung;Kim, Yong-Tae;Park, Gil-Cheol;Lee, Sang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3B
    • /
    • pp.421-430
    • /
    • 2010
  • Now a days, as a communications network is being broadband, IPTV(Internet Protocol Television) service which provides various two-way TV service is increasing. But as the data which is transmitted between IPTV set-top box and smart card is almost transmitted to set-top box, the illegal user who gets legal authority by approaching to the context of contents illegally using McComac Hack Attack is not prevented perfectly. In this paper, set-top box access security model is proposed which is for the protection from McComac Hack Attack that tries to get permission for access of IPTV service illegally making data line which is connected from smart card to set-top box by using same kind of other set-top box which illegal user uses. The proposed model reports the result of test which tests the user who wants to get permission illegally by registration the information of a condition of smart card which is usable in set-top box in certification server so that it prevents illegal user. Specially, the proposed model strengthen the security about set-top box by adapting public key which is used for establishing neighbor link and inter-certification process though secret value and random number which is created by Pseudo random function.

A DID-Based Transaction Model that Guarantees the Reliability of Used Car Data (중고자동차 데이터의 신뢰성을 보장하는 DID기반 거래 모델)

  • Kim, Ho-Yoon;Han, Kun-Hee;Shin, Seung-Soo
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.4
    • /
    • pp.103-110
    • /
    • 2022
  • Online transactions are more familiar in various fields due to the development of the ICT and the increase in trading platforms. In particular, the amount of transactions is increasing due to the increase in used transaction platforms and users, and reliability is very important due to the nature of used transactions. Among them, the used car market is very active because automobiles are operated over a long period of time. However, used car transactions are a representative market to which information asymmetry is applied. In this paper presents a DID-based transaction model that guarantees reliability to solve problems with false advertisements and false sales in used car transactions. In the used car transaction model, sellers only register data issued by the issuing agency to prevent false sales at the time of initial sales registration. It is authenticated with DID Auth in the issuance process, it is safe from attacks such as sniping and middleman attacks. In the presented transaction model, integrity is verified with VP's Proof item to increase reliability and solve information asymmetry. Also, through direct transactions between buyers and sellers, there is no third-party intervention, which has the effect of reducing fees.

A Study on the Development of Analysis Model for Maritime Security Management (해상보안관리 분석모델 개발에 관한 연구)

  • Jeong, Woo-Lee
    • Journal of Navigation and Port Research
    • /
    • v.36 no.1
    • /
    • pp.9-14
    • /
    • 2012
  • Maritime security incidents by pirates and by terrorists increase, but maritime incidents investigation models are limited to figure out the maritime security incidents. This paper provides the analysis model for maritime security incidents. To develop this analysis model, this categorizes five threat factors, the ship, the cargo type, port system, human factor, information flow system, makes the risk assessment matrix to quantify the risk related to threat factors and classifies four priority categories of risk assessment matrix. Also, this model makes from the frameworks which include a variety of security initiatives implementing in stakeholder levels like international organizations, individual governments, shipping companies, and the ship. Therefore, this paper develops the Analysis for Maritime Security Management model based on various security initiatives responding to the stakeholder levels of maritime security management and top-bottom/bottom-up decision trees, and shows the validity through verifying the real maritime security incident of M/V Petro Ranger.

Development of Integrated Security Control Service Model based on Artificial Intelligence Technology (인공지능 기술기반의 통합보안관제 서비스모델 개발방안)

  • Oh, Young-Tack;Jo, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.1
    • /
    • pp.108-116
    • /
    • 2019
  • In this paper, we propose a method to apply artificial intelligence technology efficiently to integrated security control technology. In other words, by applying machine learning learning to artificial intelligence based on big data collected in integrated security control system, cyber attacks are detected and appropriately responded. As technology develops, many large capacity Is limited to analyzing individual logs. The analysis method should also be applied to the integrated security control more quickly because it needs to correlate the logs of various heterogeneous security devices rather than one log. We have newly proposed an integrated security service model based on artificial intelligence, which analyzes and responds to these behaviors gradually evolves and matures through effective learning methods. We sought a solution to the key problems expected in the proposed model. And we developed a learning method based on normal behavior based learning model to strengthen the response ability against unidentified abnormal behavior threat. In addition, future research directions for security management that can efficiently support analysis and correspondence of security personnel through proposed security service model are suggested.

Improved Network Intrusion Detection Model through Hybrid Feature Selection and Data Balancing (Hybrid Feature Selection과 Data Balancing을 통한 효율적인 네트워크 침입 탐지 모델)

  • Min, Byeongjun;Ryu, Jihun;Shin, Dongkyoo;Shin, Dongil
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.2
    • /
    • pp.65-72
    • /
    • 2021
  • Recently, attacks on the network environment have been rapidly escalating and intelligent. Thus, the signature-based network intrusion detection system is becoming clear about its limitations. To solve these problems, research on machine learning-based intrusion detection systems is being conducted in many ways, but two problems are encountered to use machine learning for intrusion detection. The first is to find important features associated with learning for real-time detection, and the second is the imbalance of data used in learning. This problem is fatal because the performance of machine learning algorithms is data-dependent. In this paper, we propose the HSF-DNN, a network intrusion detection model based on a deep neural network to solve the problems presented above. The proposed HFS-DNN was learned through the NSL-KDD data set and performs performance comparisons with existing classification models. Experiments have confirmed that the proposed Hybrid Feature Selection algorithm does not degrade performance, and in an experiment between learning models that solved the imbalance problem, the model proposed in this paper showed the best performance.

A Watermarking Algorithm of 3D Mesh Model Using Spherical Parameterization (구면 파라미터기법을 이용한 3차원 메쉬 모델의 워더마킹 알고리즘)

  • Cui, Ji-Zhe;Kim, Jong-Weon;Choi, Jong-Uk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.1
    • /
    • pp.149-159
    • /
    • 2008
  • In this paper, we propose a blind watermarking algorithm of 3d mesh model using spherical parameterization. Spherical parameterization is a useful method which is applicable to 3D data processing. Especially, orthogonal coordinate can not analyse the feature of the vertex coordination of the 3D mesh model, but this is possible to analyse and process. In this paper, the centroid center of the 3D model was set to the origin of the spherical coordinate, the orthogonal coordinate system was transformed to the spherical coordinate system, and then the spherical parameterization was applied. The watermark was embedded via addition/modification of the vertex after the feature analysis of the geometrical information and topological information. This algorithm is robust against to the typical geometrical attacks such as translation, scaling and rotation. It is also robust to the mesh reordering, file format change, mesh simplification, and smoothing. In this case, the this algorithm can extract the watermark information about $90{\sim}98%$ from the attacked model. This means it can be applicable to the game, virtual reality and rapid prototyping fields.

Masking Exponential-Based Neural Network via Approximated Activation Function (활성화 함수 근사를 통한 지수함수 기반 신경망 마스킹 기법)

  • Joonsup Kim;GyuSang Kim;Dongjun Park;Sujin Park;HeeSeok Kim;Seokhie Hong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.5
    • /
    • pp.761-773
    • /
    • 2023
  • This paper proposes a method to increase the power-analysis resistance of the neural network model's feedforward process by replacing the exponential-based activation function, used in the deep-learning field, with an approximated function especially at the multi-layer perceptron model. Due to its nature, the feedforward process of neural networks calculates secret weight and bias, which already trained, so it has risk of exposure of internal information by side-channel attacks. However, various functions are used as the activation function in neural network, so it's difficult to apply conventional side-channel countermeasure techniques, such as masking, to activation function(especially, to exponential-based activation functions). Therefore, this paper shows that even if an exponential-based activation function is replaced with approximated function of simple form, there is no fatal performance degradation of the model, and than suggests a power-analysis resistant feedforward neural network with exponential-based activation function, by masking approximated function and whole network.