• Title/Summary/Keyword: 공격 모델

Search Result 857, Processing Time 0.03 seconds

Perceptual Data Hiding Model with Adaptive Watermark Strength (적응적 워터마크 삽입강도를 갖는 지각적 데이터 은닉 모델)

  • 조영웅;장봉주;김응수;문광석;권기룡
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.287-290
    • /
    • 2002
  • 본 논문에서는 디지털 컨텐츠 저작권 보호를 위해 강인성과 비가시성의 유지를 위한 보다 효과적인 방법으로 웨이브릿 변환에서 적응적 워터마크 삽입강도를 갖는 지각적 데이터 은닉 모델을 제안한다. 먼저 영상을 9/7 쌍직교 웨이브릿 필터를 사용해 4레벨로 다해상도 분해한다. 다음으로 연속부대역 양자화(successive subband quantization)를 통한 시각적 중요계수(perceptually significant coefficient: PSC)들을 선정하여 선택된 계수들에 대해서만 워터마크 정보를 삽입한다. 지각 모델은 정상상태의 일반화 가우시안 모델(generalized gaussian model)로 추정된 NVF(noise visibility function)로 에지와 텍스쳐영역 그리고 평탄영역에 따라 각각 적응적으로 삽입되게 한다. 이는 각 서브밴드 내의 분산과 형상계수(shape parameter)에 의해 결정된다. 적응적 워터마크의 삽입강도를 갖기 위해 에지와 텍스쳐영역의 삽입강도는 각 서브밴드의 주파수 감도(frequency sensitivity)로 결정되고, 평탄영역의 삽입강도는 영상의 국부적 특성에 근거한 통계적 가중치를 사용한다. 삽입되는 워터마크는 랜덤시퀀스로 N(0,1)이다. 여러 가지 공격에 대한 실험으로 제안한 방법의 비가시성과 강인성을 확인한다.

  • PDF

Adaptive Image Watermark Embedding Using a Stationary GG Modeling within Multiresolution (다해상도를 갖는 정상상태 GG 모델을 이용한 적응 워터마크 은닉 기술)

  • 김현천;권기룡;김종진
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05d
    • /
    • pp.886-889
    • /
    • 2002
  • 본 논문에서는 보다 강인한 워터마크의 은닉을 위하여 웨이브릿 변환영역에서 정상상태 일반화 가우스(generalized Gaussian) 모델을 이용한 적응 워터마크 은닉 기술을 제안한다. 워터마크는 고주파 영역에서 연속 부대역 양자화(successive subband quantization: SSQ)를 이용하여 다해상도 영상의 웨이브릿 계수 중에서 시각적 중요 계수(perceptually significant coefficients: PSC)에만 은닉한다. 워터마크를 은닉하기 위한 지각모델은 정상상태의 통계적 특성을 이용한다. 이것은 국부영상 특성을 갖는 NVF(noise visibility function) 함수에 의하여 계산되어진다. 은닉모델은 다해상도내의 각 서브밴드별 분산과 형상계수(shape parameter)를 사용한다. 여러 가지 공격 실험결과 우수한 비가시성과 강인성을 확인하였다.

  • PDF

Development of SVDB for performance improvement of security (보안 시스템의 성능 향상을 위한 SVDB 개발)

  • 이원영;조대호
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2002.11a
    • /
    • pp.17-21
    • /
    • 2002
  • 네트워크 보안의 중요성과 필요성이 증대됨에 따라 많은 조직들이 다양한 보안 시 스템을 네트워크에 적용하고 있다. 침입 차단 시스템, 침입 탐지 시스템, 취약점 스캐너와 같은 보안 시스템들이 취약성 정보를 공유하게 되면 일관된 통합 보안 환경을 구축할 수 있다. 본 연구진은 통합 보안 시뮬레이션 환경의 구축을 위해 여러 보안 시스템 모델들이 사용할 수 있는 취약성 정보들을 집약시킴으로써 보안 시스템간의 정보 공유를 쉽게 할 수 있는 SVDB (Simulation based Vulnerability Data Base)를 구축하였다. 네트워크의 한 구성요소인 SVDB는 보안 시스템 모델의 구성에 필요한 다양한 정보를 담고 있어 한 호스트나 네트워크가 갖는 취약성을 조기에 발견할 수 있다. 또한 SVDB는 침입 탐지 시스템과 같은 보안 시스템이 존재하는 네트워크를 시뮬레이션 하는데 필요한 보안 정보를 제공한다. 보안시스템을 위한 시뮬레이션 모델은 DEVS (Discrete EVent system Specification) 방법론을 사용하여 구성하였다. 또한 이렇게 구축된 시뮬레이션 모델들이 SVDB와 연동하기 위한 인터페이스 모듈을 구현하였다. 취약성 스캐너, 침입 탐지 시스템, 침임 차단 시스템이 정보를 공유함으로써 공격에 효과적인 대응하는 것을 시뮬레이션을 통해 보인다.

  • PDF

Data Mining based Classification Model for False Alarm rate reducing of IDS (IDS의 False Alarm 발생율 감소를 위한 데이터 마이닝 기반의 분류모델)

  • 전원용;신문선;김은희;류근호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.247-249
    • /
    • 2004
  • IDS에서 발생되는 경보의 수는 최근 인터넷 애플리케이션의 발달로 인하여 급격히 증가하고 있으며. 그로 인해 오 경보의 수도 함께 증가하고 있다. 발생된 경보들은 침입탐지 시스템의 성능저하와 alert flooding 의 원인이 된다. 따라서 이 논문에서는 다량의 경보 중에서 오 경보(False Alarm)의 발생을 감소시킬 수 있는 오 경보 분류 모델을 제안한다. 제안된 오 경보 분류 모델은 데이터 마이닝 기법들 중에서 분류 기법을 기반으로 구현되었다. 실험 을 통해서 IDS에서 발생하는 경보 중에서 정상데이터이나 공격으로 잘못 판단하여 발생하는 False Positive의 발생율이 현저히 감소됨을 확인할 수 있었다. 제안된 오 경보 분류 모델은 경보메시지 축약의 효과가 있으며 침입탐지 시스템의 탐지율을 높이는데 활용될 수 있다.

  • PDF

Network intrusion detection Model through Hybrid Feature Selection and Data Balancing (Hybrid Feature Selection과 Data Balancing을 통한 네트워크 침입 탐지 모델)

  • Min, Byeongjun;Shin, Dongkyoo;Shin, Dongil
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.526-529
    • /
    • 2020
  • 최근 네트워크 환경에 대한 공격이 급속도로 고도화 및 지능화 되고 있기에, 기존의 시그니처 기반 침입탐지 시스템은 한계점이 명확해지고 있다. 이러한 문제를 해결하기 위해서 기계학습 기반의 침입 탐지 시스템에 대한 연구가 활발히 진행되고 있지만 기계학습을 침입 탐지에 이용하기 위해서는 두 가지 문제에 직면한다. 첫 번째는 실시간 탐지를 위한 학습과 연관된 중요 특징들을 선별하는 문제이며 두 번째는 학습에 사용되는 데이터의 불균형 문제로, 기계학습 알고리즘들은 데이터에 의존적이기에 이러한 문제는 치명적이다. 본 논문에서는 위 제시된 문제들을 해결하기 위해서 Hybrid Feature Selection과 Data Balancing을 통한 심층 신경망 기반의 네트워크 침입 탐지 모델을 제안한다. NSL-KDD 데이터 셋을 통해 학습을 진행하였으며, 평가를 위해 Accuracy, Precision, Recall, F1 Score 지표를 사용하였다. 본 논문에서 제안된 모델은 Random Forest 및 기본 심층 신경망 모델과 비교해 F1 Score를 기준으로 7~9%의 성능 향상을 이루었다.

Analysis of Malware Image Data Augmentation based on GAN (GAN 기반의 악성코드 이미지 데이터 증강 분석)

  • Won-Jun Lee;ChangHoon Kang;Ah Reum Kang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.99-100
    • /
    • 2024
  • 다양한 변종들의 존재와 잘 알려지지 않은 취약점을 이용한 공격은 악성코드 수집을 어렵게 하는 요인들이다. 부족한 악성코드 수를 보완하고자 생성 모델을 활용한 이미지 기반의 악성코드 데이터를 증강한 연구들도 존재하였다. 하지만 생성 모델이 실제 악성코드를 생성할 수 있는지에 대한 분석은 진행되지 않았다. 본 연구는 VGG-11 모델을 활용해 실제 악성코드와 생성된 악성코드 이미지의 이진 분류하였다. 실험 결과 VGG-11 모델은 99.9%의 정확도로 두 영상을 다르게 판단한다

  • PDF

A Method for Enhancing Security in Federated Learning Using Homomorphic Encryption with Key Distribution (키 분배를 활용한 동형암호 기반의 연합학습 보안 강화 기법)

  • Dae Ho Kwon;Ajit Kumar;Bong Jun Choi
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.824-825
    • /
    • 2024
  • 연합학습에서 로컬 모델을 통해 참가자의 데이터 프라이버시를 침해할 가능성이 있다. 동형암호 기반 연합학습은 학습 과정에서 모든 가중치를 암호화해 통신 과정에서의 공격을 차단한다. 그러나 기존의 Paillier 동형암호 기반 연합학습은 모든 참가자가 같은 공개키 및 비밀키를 공유하는 문제가 있다. 본 연구에서는 지속적인 선택적 키 분배를 도입하여 외부에서 다른 참가자의 로컬 모델에 접속할 수 없도록 하고, 내부에서도 다른 참가자의 로컬 모델을 획득하기 어렵게 한다. MNIST 데이터를 사용하여 CNN 모델의 성능을 평가한 결과, 제안된 방법이 기존과 유사한 정확도를 보여준다.

Protecting Multi Ranked Searchable Encryption in Cloud Computing from Honest-but-Curious Trapdoor Generating Center (트랩도어 센터로부터 보호받는 순위 검색 가능한 암호화 다중 지원 클라우드 컴퓨팅 보안 모델)

  • YeEun Kim;Heekuck Oh
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1077-1086
    • /
    • 2023
  • The searchable encryption model allows to selectively search for encrypted data stored on a remote server. In a real-world scenarios, the model must be able to support multiple search keywords, multiple data owners/users. In this paper, these models are referred to as Multi Ranked Searchable Encryption model. However, at the time this paper was written, the proposed models use fully-trusted trapdoor centers, some of which assume that the connection between the user and the trapdoor center is secure, which is unlikely that such assumptions will be kept in real life. In order to improve the practicality and security of these searchable encryption models, this paper proposes a new Multi Ranked Searchable Encryption model which uses random keywords to protect search words requested by the data downloader from an honest-but-curious trapdoor center with an external attacker without the assumptions. The attacker cannot distinguish whether two different search requests contain the same search keywords. In addition, experiments demonstrate that the proposed model achieves reasonable performance, even considering the overhead caused by adding this protection process.

A Study on Efficient AI Model Drift Detection Methods for MLOps (MLOps를 위한 효율적인 AI 모델 드리프트 탐지방안 연구)

  • Ye-eun Lee;Tae-jin Lee
    • Journal of Internet Computing and Services
    • /
    • v.24 no.5
    • /
    • pp.17-27
    • /
    • 2023
  • Today, as AI (Artificial Intelligence) technology develops and its practicality increases, it is widely used in various application fields in real life. At this time, the AI model is basically learned based on various statistical properties of the learning data and then distributed to the system, but unexpected changes in the data in a rapidly changing data situation cause a decrease in the model's performance. In particular, as it becomes important to find drift signals of deployed models in order to respond to new and unknown attacks that are constantly created in the security field, the need for lifecycle management of the entire model is gradually emerging. In general, it can be detected through performance changes in the model's accuracy and error rate (loss), but there are limitations in the usage environment in that an actual label for the model prediction result is required, and the detection of the point where the actual drift occurs is uncertain. there is. This is because the model's error rate is greatly influenced by various external environmental factors, model selection and parameter settings, and new input data, so it is necessary to precisely determine when actual drift in the data occurs based only on the corresponding value. There are limits to this. Therefore, this paper proposes a method to detect when actual drift occurs through an Anomaly analysis technique based on XAI (eXplainable Artificial Intelligence). As a result of testing a classification model that detects DGA (Domain Generation Algorithm), anomaly scores were extracted through the SHAP(Shapley Additive exPlanations) Value of the data after distribution, and as a result, it was confirmed that efficient drift point detection was possible.

Experimental Comparison of Network Intrusion Detection Models Solving Imbalanced Data Problem (데이터의 불균형성을 제거한 네트워크 침입 탐지 모델 비교 분석)

  • Lee, Jong-Hwa;Bang, Jiwon;Kim, Jong-Wouk;Choi, Mi-Jung
    • KNOM Review
    • /
    • v.23 no.2
    • /
    • pp.18-28
    • /
    • 2020
  • With the development of the virtual community, the benefits that IT technology provides to people in fields such as healthcare, industry, communication, and culture are increasing, and the quality of life is also improving. Accordingly, there are various malicious attacks targeting the developed network environment. Firewalls and intrusion detection systems exist to detect these attacks in advance, but there is a limit to detecting malicious attacks that are evolving day by day. In order to solve this problem, intrusion detection research using machine learning is being actively conducted, but false positives and false negatives are occurring due to imbalance of the learning dataset. In this paper, a Random Oversampling method is used to solve the unbalance problem of the UNSW-NB15 dataset used for network intrusion detection. And through experiments, we compared and analyzed the accuracy, precision, recall, F1-score, training and prediction time, and hardware resource consumption of the models. Based on this study using the Random Oversampling method, we develop a more efficient network intrusion detection model study using other methods and high-performance models that can solve the unbalanced data problem.