• Title/Summary/Keyword: 공격 그룹 유사도

Search Result 15, Processing Time 0.019 seconds

Ensemble Model using Multiple Profiles for Analytical Classification of Threat Intelligence (보안 인텔리전트 유형 분류를 위한 다중 프로파일링 앙상블 모델)

  • Kim, Young Soo
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.3
    • /
    • pp.231-237
    • /
    • 2017
  • Threat intelligences collected from cyber incident sharing system and security events collected from Security Information & Event Management system are analyzed and coped with expanding malicious code rapidly with the advent of big data. Analytical classification of the threat intelligence in cyber incidents requires various features of cyber observable. Therefore it is necessary to improve classification accuracy of the similarity by using multi-profile which is classified as the same features of cyber observables. We propose a multi-profile ensemble model performed similarity analysis on cyber incident of threat intelligence based on both attack types and cyber observables that can enhance the accuracy of the classification. We see a potential improvement of the cyber incident analysis system, which enhance the accuracy of the classification. Implementation of our suggested technique in a computer network offers the ability to classify and detect similar cyber incident of those not detected by other mechanisms.

Research on text mining based malware analysis technology using string information (문자열 정보를 활용한 텍스트 마이닝 기반 악성코드 분석 기술 연구)

  • Ha, Ji-hee;Lee, Tae-jin
    • Journal of Internet Computing and Services
    • /
    • v.21 no.1
    • /
    • pp.45-55
    • /
    • 2020
  • Due to the development of information and communication technology, the number of new / variant malicious codes is increasing rapidly every year, and various types of malicious codes are spreading due to the development of Internet of things and cloud computing technology. In this paper, we propose a malware analysis method based on string information that can be used regardless of operating system environment and represents library call information related to malicious behavior. Attackers can easily create malware using existing code or by using automated authoring tools, and the generated malware operates in a similar way to existing malware. Since most of the strings that can be extracted from malicious code are composed of information closely related to malicious behavior, it is processed by weighting data features using text mining based method to extract them as effective features for malware analysis. Based on the processed data, a model is constructed using various machine learning algorithms to perform experiments on detection of malicious status and classification of malicious groups. Data has been compared and verified against all files used on Windows and Linux operating systems. The accuracy of malicious detection is about 93.5%, the accuracy of group classification is about 90%. The proposed technique has a wide range of applications because it is relatively simple, fast, and operating system independent as a single model because it is not necessary to build a model for each group when classifying malicious groups. In addition, since the string information is extracted through static analysis, it can be processed faster than the analysis method that directly executes the code.

Implementation of Analyzer of the Alert Data using Data Mining (데이타마이닝 기법을 이용한 경보데이타 분석기 구현)

  • 신문선;김은희;문호성;류근호;김기영
    • Journal of KIISE:Databases
    • /
    • v.31 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • As network systems are developed rapidly and network architectures are more complex than before, it needs to use PBNM(Policy-Based Network Management) in network system. Generally, architecture of the PBNM consists of two hierarchical layers: management layer and enforcement layer. A security policy server in the management layer should be able to generate new policy, delete, update the existing policy and decide the policy when security policy is requested. And the security policy server should be able to analyze and manage the alert messages received from Policy enforcement system in the enforcement layer for the available information. In this paper, we propose an alert analyzer using data mining. First, in the framework of the policy-based network security management, we design and implement an alert analyzes that analyzes alert data stored in DBMS. The alert analyzer is a helpful system to manage the fault users or hosts. Second, we implement a data mining system for analyzing alert data. The implemented mining system can support alert analyzer and the high level analyzer efficiently for the security policy management. Finally, the proposed system is evaluated with performance parameter, and is able to find out new alert sequences and similar alert patterns.

Extraction and Taxonomy of Ransomware Features for Proactive Detection and Prevention (사전 탐지와 예방을 위한 랜섬웨어 특성 추출 및 분류)

  • Yoon-Cheol Hwang
    • Journal of Industrial Convergence
    • /
    • v.21 no.9
    • /
    • pp.41-48
    • /
    • 2023
  • Recently, there has been a sharp increase in the damages caused by ransomware across various sectors of society, including individuals, businesses, and nations. Ransomware is a malicious software that infiltrates user computer systems, encrypts important files, and demands a ransom in exchange for restoring access to the files. Due to its diverse and sophisticated attack techniques, ransomware is more challenging to detect than other types of malware, and its impact is significant. Therefore, there is a critical need for accurate detection and mitigation methods. To achieve precise ransomware detection, an inference engine of a detection system must possess knowledge of ransomware features. In this paper, we propose a model to extract and classify the characteristics of ransomware for accurate detection of ransomware, calculate the similarity of the extracted characteristics, reduce the dimension of the characteristics, group the reduced characteristics, and classify the characteristics of ransomware into attack tools, inflow paths, installation files, command and control, executable files, acquisition rights, circumvention techniques, collected information, leakage techniques, and state changes of the target system. The classified characteristics were applied to the existing ransomware to prove the validity of the classification, and later, if the inference engine learned using this classification technique is installed in the detection system, most of the newly emerging and variant ransomware can be detected.

Advance Understanding and New Treatment of Alopecia Areata (원형탈모증(alopecia areata)의 최신 이해와 치료)

  • Kang, Kyung-Hwa
    • Journal of Life Science
    • /
    • v.26 no.11
    • /
    • pp.1345-1354
    • /
    • 2016
  • Alopecia areata (AA) is a common and tissue-specific autoimmune disease of hair follicle resulting in the loss of hair on the scalp and elsewhere on the body. Hair follicles is a unique organ because it has its own immune system and hormonal milieu and has a different immune state at each hair cycle stage. The collapses of anagen-dependent hair follicle immune privilege arise autoimmune attack, inducing ectopic MHC class I expression in the hair follicle epithelium and autoantigen presentation to autoreactive CD8+T cells, which results in AA. Clinical and experimental studies have pointed that psychological stress may also influence the hair follicle immune/hormone systems and contribute to the induction of AA. The key pathogenesis of AA is associated with immune privilege guardians (including ACTH, ${\alpha}-MSH$, and $TGF-{\beta}$), natural killer group 2D-positive (NKG2D+) cells (including NK and CD8+T cells), and stress hormones (including CRH and substance P). Effective treatments for AA are still demanded. One of the future targets of treatment will be the modification of hair follicle immune privilege including stress. Recent studies have reported that JAK inhibitors and immunomodulators used in other autoimmune disease, such as psoriasis, atopic dermatitis, and rheumatoid arthritis, Tregs, platelet-rich plasma therapy, statins, and prostaglandin anaolgues are effective for AA. Here the article reviews the recent understanding in the pathogenesis associated with perifollicular endocrine/immunology and new treatments of AA.