• Title/Summary/Keyword: 공간 자기 상관성 분석

Search Result 125, Processing Time 0.026 seconds

Spatial Distribution Characteristic Analysis of Traffic Accidents in Ulsan (울산광역시 교통사고 유형별 공간적 분포 특성 분석)

  • Kim, Mi-Song;Goo, Sin-Hoi;Pyo, Kyung-Soo
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2016.11a
    • /
    • pp.261-262
    • /
    • 2016
  • 교통사고의 발생요인에는 다양한 원인들이 있지만 본 연구에서는 공간적으로 접근하여 사고유형별 분포특성을 도출하기 위해 공간적 자기상관성 분석을 수행하였다. 논문에서는 2012년부터 2014년까지 울산광역시에서 발생된 교통사고를 대상으로 분석을 수행하였다. 그 결과 울산시 전체 교통사고 약 53%는 안전운전불이행이며 다음으로는 안전거리미확보, 신호위반 순으로 나타났다. 밀도분석 결과는 사고유형별로 분포가 차이가 있었으며 안전운전불이행의 경우 가장 큰 군집은 중심시가지인 달동과 삼산동 중심에 나타났으며 중앙선침범은 도시의 중심부 보다는 면지역에 넓게 퍼져서 발생되었으며 산업단지가 있는 동구지역에 군집이 크게 나타났다. 따라서 읍면동별 공간적 특성을 파악하기 위해 Moran's I분석과 LISA분석을 수행한 결과 안전운전불이행, 안전거리미확보, 신호위반, 교차로운행방해 모두 중심시가지인 신정동, 달동, 삼산동이 공간적 자기상관성이 높았으며 중앙선침범의 경우 밀도분석 결과와 마찬가지로 중심시가지 이외에 읍면 지역도 자기상관성이 더 높게 나타났다. 이를 통해 사고유형별 공간의존성 및 이질성을 파악하여 교통사고 다발지역을 도출하고 이를 토대로 지역특성에 맞는 저감 대책 마련에 활용되고자 한다.

  • PDF

A study using spatial regression models on the determinants of the welfare expenditure in the local governments in Korea (공간회귀분석을 통한 지방자치단체 복지지출의 영향요인에 관한 연구)

  • Park, Gyu-Beom;Ham, Young-Jin
    • Journal of Digital Convergence
    • /
    • v.16 no.10
    • /
    • pp.89-99
    • /
    • 2018
  • The purpose of this study is to analyse the determinants of the change in the welfare expenditure of local governments in 2015. This study analyzed the spatial correlation of welfare expenditure among neighboring local governments and determined the factors affecting the welfare expenditures. According to the results of the study, spatial correlation of welfare expenditure among local governments appears. Determinants, such as socio-economic factors, administrative factors, public financial factors are affecting the amount of the welfare expenditures, but local political factors, and local tax, last year's budgets are not correlated with the amount of local welfare expenditures. In this study, it is significant to found out that the spatial correlation of welfare expenditure among the local governments and to examine the determinants. If possible, it is necessary to analyze the time-series analysis using the multi-year welfare expenditure data, expecially self-welfare expenditures.

Spatial Autocorrelation Characteristic Analysis on Bayesian ensemble Precipitation of Nakdong River Basin (낙동강유역 강우의 공간자기상관 특성분석을 통한 베이지안 앙상블 강우 검증)

  • Moon, Soo Jin;Sun, Ho Young;Kang, Boo Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.411-411
    • /
    • 2017
  • 유역 내 발생하는 강우의 공간적인 분포는 인접성 및 거리에 따라 달라질 수 있다. 공간자기상관 분석은 공간단위(유역 또는 행정구역)의 변수(강수 등)가 주변지역과 갖는 관계를 통해 얼마나 분산되어 있는지 혹은 군집되어 있는지를 판별하는 기법으로 최근 많은 연구에서 활성화 되고 있다. 본 연구에서는 낙동강유역을 대상으로 1980~2000년까지 20개년의 기상청을 통해 수집한 강우자료와 CMIP5(Coupled Model Intercomparison Project Phase 5)에서 제공하는 기후변화 자료 중 가용할 수 있는 20개 모델의 강우를 수집하였다. 기후변화 자료는 정상성 분위사상법으로 지역오차보정을 실시하고 불확실성을 저감하고자 베이지안 모델 평균기법을 통해 새로운 시계열을 생성하였다. 생성된 시계열의 공간적인 분포를 정량적으로 평가하고자 중권역별 공간자기상관 분석을 수행하였다. 대부분의 연구에서는 GIS를 활용하여 정성적으로 강우의 분포를 나타내고 있지만 본 연구에서는 공간단위의 인접성 또는 거리에 따른 척도를 기반으로 공간자기상관을 탐색할 수 있는 Moran's I와 LISA(Local Indicators of Spatial Association)기법을 적용하였다. Moran's I는 전체 연구지역에 대한 관계를 하나의 값으로 보여주는 전역적인 기법이며, LISA는 상대적으로 넓은 지역을 국지적으로 구분하여 특정지역에 대한 Hot spot 및 Cold spot을 통해 공간자기상관 정도를 나타내는 국지적인 기법이다. 두 기법을 적용하기 위하여 인접성 기반의 공간매트릭스를 산정하고 계절별 관측값과 베이지안 앙상블 강우의 Moran's I 및 LISA 분석을 실시하였다. 관측자료와 베이지안 앙상블 강우의 분석결과가 매우 유사하게 나타남으로써 베이지안 앙상블 강우의 공간적인 분포가 관측강우를 충분히 재현하고 있다고 판단된다.

  • PDF

Estimation of the Natural Damage Disaster Considering the Spatial Autocorrelation and Urban Characteristics (공간적 자기상관성과 도시특성 요소를 고려한 자연재해 피해 분석)

  • Seo, Man Whoon;Lee, Jae Song;Choi, Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.723-733
    • /
    • 2016
  • This study aims to analyze the effects of urban characteristics on the amount of damage caused by natural disasters. It is focused on the areas of a municipal level in Korea. Also, it takes into account the spatial autocorrelation of the damage caused by natural disasters. Moran's I statistics was estimated to examine the spatial autocorrelation in the damage from the study area. Subsequent to evaluating the suitability for spatial regression models and the OLS regression model, the spatial lag model was employed as an empirical analysis for the study. It showed that the increase in residential area leads to the decrease in the amount of natural disaster damage. On the other hand, the increase in green area and river basin is associated with the increase in the damage. As a result of empirical analysis, appropriate policy establishment and implementation about the damage-adding factors is needed in order to reduce the amount of damage in the future.

A Study on Scale Effects of the MAUP According to the Degree of Spatial Autocorrelation - Focused on LBSNS Data - (공간적 자기상관성의 정도에 따른 MAUP에서의 스케일 효과 연구 - LBSNS 데이터를 중심으로 -)

  • Lee, Young Min;Kwon, Pil;Yu, Ki Yun;Huh, Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.25-33
    • /
    • 2016
  • In order to visualize point based Location-Based Social Network Services(LBSNS) data on multi-scaled tile map effectively, it is necessary to apply tile-based clustering method. Then determinating reasonable numbers and size of tiles is required. However, there is no such criteria and the numbers and size of tiles are modified based on data type and the purpose of analysis. In other words, researchers' subjectivity is always involved in this type of study. This is when Modifiable Areal Unit Problem(MAUP) occurs, that affects the results of analysis. Among LBSNS, geotagged Twitter data were chosen to find the influence of MAUP in scale effects perspective. For this purpose, the degree of spatial autocorrelation using spatial error model was altered, and change of distributions was analyzed using Morna's I. As a result, positive spatial autocorrelation showed in the original data and the spatial autocorrelation was decreased as the value of spatial autoregressive coefficient was increasing. Therefore, the intensity of the spatial autocorrelation of Twitter data was adjusted to five levels, and for each level, nine different size of grid was created. For each level and different grid sizes, Moran's I was calculated. It was found that the spatial autocorrelation was increased when the aggregation level was being increased and decreased in a certainpoint. Another tendency was found that the scale effect of MAUP was decreased when the spatial autocorrelation was high.

A Spatial Statistical Approach on the Correlation between Walkability Index and Urban Spatial Characteristics -Case Study on Two Administrative Districts, Busan- (도시 공간특성과 Walkability Index의 상관성에 관한 공간통계학적 접근 -부산광역시 2개 구를 대상으로-)

  • Choi, Don Jeong;Suh, Yong Cheol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.343-351
    • /
    • 2014
  • The correlation between regional Walkability Index and their physical socio-economic characteristics has evaluated by the spatial statistical analysis to understand the urban pedestrian environments, where has been emerging the significance, recently. Following to the study, the Walkability Indexes were calculated quantitatively from two administrative districts of Busan and measured Global Local spatial autocorrelation indices. Additionally, the Geographically Weighted Regression model was applied to define the correlation between Walkability Indexes and urban environmental variables. The spatial autocorrelation values and clusters on the Walkability Indexes were derived in statistically significant level. Furthermore, the Geographically Weighted Regression model has been derived more improved inference than the OLS regression model, so as the influence of local level pedestrian environment was identified. The results of this study suggest that the spatial statistical approach can be effective on quantitative assessing the pedestrian environment and navigating their associated factors.

An Application of Network Autocorrelation Model Utilizing Nodal Reliability (집합점의 신뢰성을 이용한 네트워크 자기상관 모델의 연구)

  • Kim, Young-Ho
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.492-507
    • /
    • 2008
  • Many classical network analysis methods approach networks in aspatial perspectives. Measuring network reliability and finding critical nodes in particular, the analyses consider only network connection topology ignoring spatial components in the network such as node attributes and edge distances. Using local network autocorrelation measure, this study handles the problem. By quantifying similarity or clustering of individual objects' attributes in space, local autocorrelation measures can indicate significance of individual nodes in a network. As an application, this study analyzed internet backbone networks in the United States using both classical disjoint product method and Getis-Ord local G statistics. In the process, two variables (population size and reliability) were applied as node attributes. The results showed that local network autocorrelation measures could provide local clusters of critical nodes enabling more empirical and realistic analysis particularly when research interests were local network ranges or impacts.

  • PDF

Testing Spatial Autocorrelation of Burn Severity (산불 피해강도의 공간 자기상관성 검증에 관한 연구)

  • Lee, Sang-Woo;Won, Myoung-Soo;Lee, Hyun-Joo
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.2
    • /
    • pp.203-212
    • /
    • 2012
  • This study aims to test presence of spatial autocorrelation of burn severity in Uljin and Youngduk areas burned in 2011. SPOT satellite images were used to compute the NDVI representing burn severity, and NDVI values were sampled for 5,000 randomly dispersed points for each site. Spatial autocorrelations of sampled NDVI values were analyzed with Moran's I and Variogram models. Moran's I values of burn severity in Uljin and Youngduk areas were 0.7745 and 0.7968, respectively, indicating presence of strong spatial autocorrelations. On the basis of Variogram and changes of Moran's I values by lag class, ideal sampling distance were proposed, which were 566-2,151 m for Uljin and 272-402 m for Youngduk. It was recommended to apply these ranges of sampling distance in flexible corresponding to Anisotropic characteristics of burned areas.

Bayesian analysis of directional conditionally autoregressive models (방향성 공간적 조건부 자기회귀 모형의 베이즈 분석 방법)

  • Kyung, Minjung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1133-1146
    • /
    • 2016
  • Counts or averages over arbitrary regions are often analyzed using conditionally autoregressive (CAR) models. The spatial neighborhoods within CAR model are generally formed using only the inter-distance or boundaries between the sub-regions. Kyung and Ghosh (2009) proposed a new class of models to accommodate spatial variations that may depend on directions, using different weights given to neighbors in different directions. The proposed model, directional conditionally autoregressive (DCAR) model, generalized the usual CAR model by accounting for spatial anisotropy. Bayesian inference method is discussed based on efficient Markov chain Monte Carlo (MCMC) sampling of the posterior distributions of the parameters. The method is illustrated using a data set of median property prices across Greater Glasgow, Scotland, in 2008.

Bayesian spatial analysis of obesity proportion data (비만율 자료에 대한 베이지안 공간 분석)

  • Choi, Jungsoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1203-1214
    • /
    • 2016
  • Obesity is a risk factor for various diseases as well as itself a disease and associated with socioeconomic factors. The obesity proportion has been increasing in Korea over about 15 years so that investigation of the socioeconomic factors related with obesity is important in terms of preventation of obesity. In particular, the association between obesity and socioeconomic status varies with gender and has spatial dependency. In the paper, we estimate the effects of socioeconomic factors on obesity proportion by gender, considering the spatial correlation. Here, a conditional autoregressive model under the Bayesian framework is used in order to take into account the spatial dependency. For the real applicaiton, we use the obestiy proportion dataset at 25 districts of Seoul in 2010. We compare the proposed spatial model with a non-spatial model in terms of the goodness-of-fit and prediction measures so the spatial model performs well.