• Title/Summary/Keyword: 공간 선량

Search Result 206, Processing Time 0.043 seconds

Measurement of the Spatial Dose Rates During PET/CT Studies (전신 PET/CT 검사에서 공간선량률 측정)

  • Park, Myeong-Hwan
    • Journal of radiological science and technology
    • /
    • v.29 no.4
    • /
    • pp.257-260
    • /
    • 2006
  • In order to evaluate the exposure to the radiologic technologists from patients who had been administrated with radiopharmaceuticals, we measured the spatial dose rates at $5{\sim}300\;cm$ from skin surface of patients using an proportional digital surveymeter, 1.5(PET scan) and 4hr(bone scan) after injection. In results, the exposure to the technologists in each procedure was small, compared with the dose limits of the medical workers. However, the dose-response relationships in cancer and hereditary effects, referred to as the stochastic effects, have been assumed linear and no threshold models ; therefore, the exposure should be minimized. For this purpose, the measurements of spatial dose rate distributions were thought to be useful.

  • PDF

The Evaluation of Space Dose Distribution for Digital Mammography Equipment (디지털 유방촬영장비에 관한 공간선량율 평가)

  • Jung, Hongmoon;Jung, Jaeeun;Hyun, Hyejin;Won, Doyeon
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.1
    • /
    • pp.61-65
    • /
    • 2015
  • Mammography equipment is an essential detector for making an early diagnosis of female's breast lesion. Recently, in most hospitals, a digital mammography detector is used due to the wide and consistent supply of digital mammography equipment. However, the average effective radiation is increasing due to the indiscreet use of CR or DR mammography. The purpose of this study is to recognize the possible indirect radiation damage, which can be occurred due to an excessive effective exposure of radiation, by evaluating spacial radiation rate of the digital mammography detector used for female patient. Consequently, the high mount of spacial radiation showed digital mammography equipment on the horizontal direction. Considering the result, digital mammography equipment should be installed by avoiding along the horizontal direction.

Relationship between the Distribution of Space doses in X-ray Rooms and the "Inverse Square Law of Distance" (X선 촬영실 내 공간선량의 분포와 거리 역자승 법칙과의 관련성)

  • Choi, Seong-Kwan
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.8
    • /
    • pp.301-307
    • /
    • 2013
  • In the present study, space doses generated during X-ray radiography of hand, head, and abdomen, etc. were examined and whether the intensity of space doses of scattering rays is attenuated by the "inverse square law of distance" was figured out. First, the space doses of X-ray with small amounts of generated scattering rays such as hand radiography were mostly attenuated by the "inverse square law of distance" and were not detected at all at a distance of 2m. Second, the space doses of X-ray with large amounts of generated scattering rays such as head or abdomen radiography attenuated in higher rates than the rates under the "inverse square law of distance" at distances ranging from 30cm to 1m from the center of the irradiation field and were attenuated by the "inverse square law of distance" at distances ranging from 1m to 2m. Therefore, in X-ray rooms, the subject should be at least 2m away from the center of the irradiation field in the case of hand radiography and X-ray exposure prevention actions using protective devices are required in the entire spaces of the X-ray rooms in the case of head or abdomen radiography.

Measurement of Spatial Dose Distribution for evaluation operator dose during Neuro-interventional Procedures (두경부 질환의 인터벤션 시술 시 시술자의 피폭선량평가를 위한 공간선량측정에 관한 연구)

  • Han, Su-Chul;Hong, Dong-Hee
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.323-328
    • /
    • 2016
  • The spatial dose distribution was measured with ionization chamber as preliminary study to evaluate operator dose and to study dose reduction during neuro-interventional procedures. The zone of operators was divided into four area (45, 135, 225, and 315 degree).We supposed that operator exist on the four area and indicated location of critical organs(eyes, breast, gonad). The spatial doses were measured depending on distance( 80, 100, 120, and 140 cm) and location of critical organs. The spatial doses of area of 225 degree were 114.5 mR/h (eyes location), 143.1 mR/h (breast location) and 147 mR/h (gonad location) in 80 cm. When changed location of x-ray generator, spatial dose increased in $18.1{\pm}10.5%$, averagely. We certified spatial dose in the operator locations, Using the results of this study, It is feasible to protect operator from radiation in neuro-interventional procedures.

Spatial dose distribution and exposure dose during lumbar lateral test (요추 측면 검사 시 공간선량 분포와 피폭선량)

  • Kim, Chang-Gyu
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.1
    • /
    • pp.17-22
    • /
    • 2014
  • During the lateral x-ray testing of lumbar, in order to obtain the optimal image for diagnosis and to minimize the exposure dose, a glass dosimeter and spatial dose measuring meter was used to measure and evaluate the exposure dose and spatial dose distribution of each organs. The exposure dose of the organs have increased as they were closer to the X-ray tube and when the radiation field was completely opened, the exposure dose was increased. In addition, scattered rays have increased as the distance got closer to the subject and with the distance of more than 200cm, 95% of scattered rays was reduced. Such results can anticipate the exposure dose of patients during the lumbar x-ray test in the future and it can be proposed as a data for determining the testing methods and expected to be widely used as an important basic data for reducing the medical exposure dose.

Measurement of the Spatial Dose Rate for Distribution Room in Department of Nuclear Medicine (핵의학과 분배실 내의 공간선량률 측정)

  • Park, Jeong-Kyu;Cho, Euy-Hyun
    • Journal of Digital Contents Society
    • /
    • v.13 no.2
    • /
    • pp.151-157
    • /
    • 2012
  • Even though the protective facility is well made with the development of medicine, the spatial dose within the radiation section could increase the exposure of the workers. The spatial dose is always present in distribution room within the Department of Nuclear Medicine, so the spatial dose of the interior distribution room is measured and analyzed for the prediction of the exposure dose. The spatial dose rate was $6.78{\pm}0.083{\mu}Sv/h$ in the $^{18}F$ distribution room of department of Nuclear Medicine, $9.248{\pm}0.013{\mu}Sv/h$ in $^{99m}Tc$, and $^{131}I$ distribution room. In addition, in case of $^{18}F$ distribution room, the yearly external exposure dose was $42.5{\mu}Sv$ when the nurse does IV in 1m in distance. It also showed that the spatial dose rate on the direction of right oblique showed higher than others by the standard of distribution window of distribution room. Therefore, the staying time of the workers should be short during distributing radiopharmaceuticals in the distribution room and the design of the distribution protection is necessary to reduce the exposure in the direction of right oblique of the protection. The utmost endeavors are required to reduce the worker's individual exposure dose while doing IV.

Research on the Actual Condition of Mammograpgy and Space Scattered Dose in Mammography Room (유방촬영의 실태와 유방촬영실의 공간산란선량에 관한 조사 연구)

  • Lee, In-Ja;Park, Kye-Yeon;Kim, Sung-Soo
    • Journal of radiological science and technology
    • /
    • v.29 no.1
    • /
    • pp.21-28
    • /
    • 2006
  • I made inquires about mammographic equipments and circumstances of mammography rooms in the 64 medical facilities in areas of Seoul and Kyong Gi Do. Moreover I had experments about exposure dose with patients and radiologic technologists. so there is the data indicated follows. 1. There are inclined to improve in quality and function of mammographic equipments, it has been proven that s/f system exchanged to DR system. 2. It is certain that the number of examinations are becoming increasingly significant. 3. The Space Scattered Dose of mammography rooms are much more larger than portable equipments. 4. I worry about the affection of expose dose about Space Scattered Dose of mammography room. 5. There is need of study how to cope with the situation about increasing exposure dose of radiologic technologists in small space and numeruous number of examinations.

  • PDF

Analysis of the Spatial Dose Rates during Dental Panoramic Radiography (치과 파노라마 촬영에서 공간선량률 분석)

  • Ko, Jong-Kyung;Park, Myeong-Hwan;Kim, Yongmin
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.509-516
    • /
    • 2016
  • A dental panoramic radiography which usually uses low level X-rays is subject to the Nuclear Safety Act when it is installed for the purpose of education. This paper measures radiation dose and spatial dose rate by usage and thereby aims to verify the effectiveness of radiation safety equipment and provide basic information for radiation safety of radiation workers and students. After glass dosimeter (GD-352M) is attached to direct exposure area, the teeth, and indirect exposure area, the eye lens and the thyroid, on the dental radiography head phantom, these exposure areas are measured. Then, after dividing the horizontal into a $45^{\circ}$, it is separated into seven directions which all includes 30, 60, 90, 120 cm distance. The paper shows that the spatial dose rate is the highest at 30 cm and declines as the distance increases. At 30 cm, the spatial dose rate around the starting area of rotation is $3,840{\mu}Sv/h$, which is four times higher than the lowest level $778{\mu}Sv/h$. Furthermore, the spatial dose rate was $408{\mu}Sv/h$ on average at the distance of 60 cm where radiation workers can be located. From a conservative point of view, It is possible to avoid needless exposure to radiation for the purpose of education. However, in case that an unintended exposure to radiation happens within a radiation controlled area, it is still necessary to educate radiation safety. But according to the current Medical Service Act, in medical institutions, even if they are not installed, the equipment such as interlock are obliged by the Nuclear Safety Law, considering that the spatial dose rate of the educational dental panoramic radiography room is low. It seems to be excessive regulation.

External Exposure Due to Natural Radionuclides in Building Materials in Korean Dwellings (건축자재내 포함된 천연방사성핵종에 의한 실내 공간의 방사선량 평가)

  • Cho, Yoon Hae;Kim, Chang Jong;Yun, Ju Yong;Cho, Dae-Hyung;Kim, Kwang Pyo
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.4
    • /
    • pp.181-190
    • /
    • 2012
  • Naturally occurring radioactive materials (NORM) in building materials are main sources of external radiation exposure to the general public. The objective of this study was to assess external radiation dose in Korean dwellings due to NORM in concrete walls. Reference room model for dose assessment was made by analyzing room structure and housing scale of Korean dwellings. In addition, dose assessments were made for varying room sizes. Absorbed doses to air and effective dose rates were calculated using radiation transport code MCNPX. Assuming a reference room of $3{\times}4{\times}2.8m^3$, absorbed dose rates in air were 0.80, 0.97, 0.08 nGy $h^{-1}$ per Bq $kg^{-1}$ for uranium series, thorium series, and $^{40}K$, respectively. Effective dose rates were 0.57, 0.69, 0.058 nSv $h^{-1}$ per Bq $kg^{-1}$, respectively. Radiation dose resulting from concrete of ceiling and floor increased with room area while radiation dose from concrete of walls decreased with room area. Therefore, total radiation doses were almost the same for the varying room area from 5 to $30m^2$. Effective dose in Korean dwellings was calculated based on measurement data of NORM concentration in concrete and occupancy fraction of Korean population by location. Annual effective dose was 0.59 mSv assuming that indoor occupancy fraction was 0.89 and concentrations of uranium series, thorium series and $^{40}K$ were 26, 39, 596 Bq $kg^{-1}$, respectively. Finally, annual effective dose in Korean dwellings can be calculated by the following equation: Effective dose=indoor occupancy fraction${\times}8760\;h\;y^{-1}{\times}(0.57C_U+0.69C_{Th}+0.058C_K)$.