The Pyramid-Technique is based on mapping n-dimensional space data into one-dimensional data and expressing it as B-tree ; and by solving the problem of search time complexity the pyramid technique also prevents the effect \"phenomenon of dimensional curse\" which is caused by treatment of hypercube range query in n-dimensional data space. The Spherical Pyramid-Technique applies the pyramid method’s space division strategy, uses spherical range query and improves the search performance to make it suitable for similarity search. However, depending on the size of data and change in dimensions, the two above technique demonstrate significantly inferior search performance for data sizes greater than one million and dimensions greater than sixteen. In this paper, we propose a new index-structured PdR-Tree to improve the search performance for high dimensional data such as multimedia data. Test results using simulation data as well as real data demonstrate that PdR-Tree surpasses both the Pyramid-Technique and Spherical Pyramid-Technique in terms of search performance.
Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
/
2004.03a
/
pp.273-278
/
2004
Feature identification is one of the largest issue in high spatial resolution satellite imagery. A popular method associated with this feature identification is image segmentation to produce image segments that are more likely to features interested. Here, it is, proposed that combination of edge extraction and region growing methods for image segments were used to improve the result of image segmentation. At the intial step, an image was segmented by edge detection method. The segments were assigned IDs, and polygon topology of segments were built. Based on the topology, the segments were tested their similarities with adjacent segments using multivariate analysis. The segments that have similar spectral characteristics were merged into a region. The test application shows that the segments composed of individual large, spectrally homogeneous structures, such as buildings and roads, were merged into more similar shape of structures.
Journal of the Korean Institute of Intelligent Systems
/
v.22
no.1
/
pp.81-86
/
2012
In this paper, we proposed a new design methodology of a pattern classification rule based on the local linear discriminant analysis expanded from the generic linear discriminant analysis which is used in the local area divided from the whole input space. There are two ways such as k-Means clustering method and the differential evolutionary algorithm to partition the whole input space into the several local areas. K-Means clustering method is the one of the unsupervised clustering methods and the differential evolutionary algorithm is the one of the optimization algorithms. In addition, the experimental application covers a comparative analysis including several previously commonly encountered methods.
본 논문에서는 영상의 색 항등성을 달성하기 위해 본질 영상의 핵심인 불변 방향을 K-means 클러스터링을 이용해 검출하는 개선된 알고리즘을 제안한다. 우선, RGB 영상을 K-means 클러스터링 기법에 의해 다수의 클러스터로 분할한다. 이 때, 클러스터 간의 거리 측정은 유클리드 거리이다. 그리고 분할된 클러스터 중 가장 많은 색을 가진 클러스터만을 x-색도 공간으로 도시하여 해당되는 후보 불변 방향을 계산한다. 검출된 후보 불변 방향은 방향별로 프로젝션된 히스토그램에서 3개 이상의 프로젝션된 데이터를 가진 bin들의 개수가 가장 적은 방향이다. 그 후, 분할된 다른 여러 클러스터에 해당되는 후 보 불변 방향을 계산하여 가장 많은 빈도로 나타나는 방향을 영상의 최종 불변 방향으로 결정한다. 실험에서 Ebner에 의해 제안된 데이터집합을 실험 영상으로 사용하였고, 색항등성 측도를 평가 척도로 사용하였다. 실험 결과, 제안한 기법은 형광성 표면을 가진 형광 데이터집합에 보다 적합하였으며, 엔트로피 기법보다 색항등성이 1.5배 이상 높았다.
유비쿼터스 사회를 실현하는 핵심기술인 u-GIS 공간정보 기술은 데이터 스트림 처리 시스템(Data Stream Management System)과 지리정보 시스템(Geography Information System)이 결합된 플랫폼인 u-GIS DSMS를 요구한다. u-GIS DSMS는 GeoSeonsor에서 수집되는 센서 테이터와 GIS의 공간정보 데이터를 결합하여 처리하는 공간영역질의가 다수 요구된다. 이런 공간영역질의들은 특정 지역에 밀집하게 등록되는 경향이 있으며, 유사한 프리디킷을 가질 가능성이 높다. 이러한 특징은 공간영역질의가 특정 지역에 밀집되면 다수의 비슷한 연산들이 반복적으로 처리하기 때문에 시스템 성능이 저하 될 것이다. 이를 해결하기 위해 영역질의 색인기법 연구가 활발히 진행되고 있다. 그러나 기존의 VCR-Index와 CQI-Index 기법은 질의영역을 셀 구조나 가상구조로 분할하여 처리하기 때문에 자원 및 연산을 공유 할 수 없어 질의 처리 속도가 현저히 저하되기 때문에 대량의 공간영역질의 처리에는 부적합하다. 그래서 본 논문에서는 공간영역질의의 효율적인 연산 공유를 위한 질의영역 밀집도 기반의 그룹화 기법을 제안한다. 이 기법은 질의영역의 밀집도를 이용하여 공간영역질의들을 그룹화 후 색인을 구성한다. 색인된 영역들의 데이터는 단일 큐로 구성 후 질의들의 프리디킷을 분석하여 자원 및 연산 공유기법을 통해 기존의 기법보다 처리 속도 향상 및 메모리 사용을 감소시켰다.
Proceedings of the Korean Information Science Society Conference
/
2012.06a
/
pp.411-413
/
2012
생강, 양파와 같은 농산물은 재배지에서 우리 식탁에 놓일 때까지 신선도 유지를 위하여 저장고에 넣어 관리한다. 하지만, 현재 설치되어 사용 중에 있는 저장고는 내부에 온/습도를 측정할 수 있는 센서를 부착하고 측정함에도 불구하고, 농산물이 얼거나 부패되는 문제점이 발생하고 있다. 이것은 저장고 내부 센서의 부착이 그만큼 효율적이지 못하다는 것을 반증하고 있는 것이다. 이 문제점을 극복하기 위하여, 본 논문에서는 보로노이 다이어그램을 이용한 센서 배치 기법을 제안한다. 이 기법은 저장고 내부의 공간을 평면 분할하고, 분할된 공간에 센서 배치를 함으로서, 저장고 내부의 온도를 정확히 얻을 수 있을 뿐만 아니라, 배치된 센서 개수의 최소화를 이룰 수 있도록 한다.
Proceedings of the Korean Information Science Society Conference
/
1999.10a
/
pp.373-375
/
1999
지적 객체는 지적소유변경, 토지 분할/합병, 토지 영역경계 변경 등의 사건이 발생함으로써 비공간 또는 공간 속성이 변경된다. 이러한 변경에 대한 정보는 지적 객체의 이력으로써 지적 관리 시스템에 저장된다. 사용자는 단일 지적 객체가 가지는 전체 이력 또는 특정 시점이나 기간 동안의 지적 객체 상태에 대한 질의를 수행할 수 있고, 과거 지적 객체가 가졌던 속성 및 형태를 확인하거나 현재의 속성 및 상태와 비교하여 지적 객체의 소유변경 내용, 행정구역상 지번/지목의 변경 과정, 영역 경게 변경 과정 등과 같은 정보를 얻을 수 있다. 이 논문은 시간 지원 지적 관리 시스템에 사건 지향 시공간 데이터 모델인 이력 그래프 데이터모델을 적용하고 객체 단위 이력 질의를 위한 시공간 연산자를 제안함으로써 시간 지원 지적 관리 시스템을 위한 객체 이력 관리 기법에 대해 설명한다.
In spatial databases, R-tree is one of the most widely used indexing structures and many variants have been proposed for its performance improvement. Among these variants, Hilbert R-tree is a representative method using Hilbert curve to process large amounts of data without high cost split techniques to construct the R-tree. This Hilbert R-tree, however, is hardly applicable to large-scale applications in practice mainly due to high pre-processing costs and slow bulk-load time. To overcome the limitations of Hilbert R-tree, we propose a novel approach for parallelizing Hilbert mapping and thus accelerating bulk-loading of Hilbert R-tree on GPU memory. Hilbert R-tree based on GPU improves bulk-loading performance by applying the inversed-cell method and exploiting parallelism for packing the R-tree structure. Our experimental results show that the proposed scheme is up to 45 times faster compared to the traditional CPU-based bulk-loading schemes.
Journal of the Korea Society of Computer and Information
/
v.15
no.9
/
pp.25-33
/
2010
We propose a retouching method that converts a general photography to a watercolor painting image using bilateral filtering and mean shift segmentation which are mostly used in image processing. The first step is to weaken high frequency components of the image, while preserving the edge of image using the bilateral filtering. And after that we perform DoG(Difference of Gradient) edge extraction and mean shift segmentation respectively from the bilateral filtered image. The DoG edge extraction is performed using luminance component of the image whose RGB color space is transformed into CIELAB space. Experimental result shows that our method can be applied to various types of image and bring better result, especially against the photo taken in daylight.
Proceedings of the Korean Information Science Society Conference
/
1998.10b
/
pp.32-134
/
1998
공간 색인의 하나인 그리드 파일은 공간 데이터 영역을 격자 형태의 셀로 분할하여 구성하는데 특히, 셀들의 크기가 모두 동일한 값으로 고정되어진 것을 고정 그리드(fixed grid)라고 한다. 셀들의 크기가 고정된으로 인해 샐 분할선 상에 객체가 존재하는 경우가 자주 발생하게 되고 이러한 객체들은 하나 이상의 셀에 의해 중복으로 참조된다. 중복 참조 객체는 1/10 시간을 증가시켜 질의 처리 시 성능 저하의 주요한 원인이 된다. 따라서 중복 객체를 효율적으로 처리 할 수 있는 클러스터링 알고리즘의 고안이 필요하다. 이 논문에서는 중복 참조 객체를 처리하기 위한 객체 클러스터링(Object clustering)과 셀 단위로 클러스터하기 위한 셀 클러스터링(Cell clustering) 알고리즘을 구현한다. 그리고 공간 질의 수행 시에 각 클러스터기법들에 대한 성능을 평가한다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.