• Title/Summary/Keyword: 공간 분할 기법

Search Result 654, Processing Time 0.029 seconds

PdR-Tree : An Efficient Indexing Technique for the improvement of search performance in High-Dimensional Data (PdR-트리 : 고차원 데이터의 검색 성능 향상을 위한 효율적인 인덱스 기법)

  • Joh, Beom-Seok;Park, Young-Bae
    • The KIPS Transactions:PartD
    • /
    • v.8D no.2
    • /
    • pp.145-153
    • /
    • 2001
  • The Pyramid-Technique is based on mapping n-dimensional space data into one-dimensional data and expressing it as B-tree ; and by solving the problem of search time complexity the pyramid technique also prevents the effect \"phenomenon of dimensional curse\" which is caused by treatment of hypercube range query in n-dimensional data space. The Spherical Pyramid-Technique applies the pyramid method’s space division strategy, uses spherical range query and improves the search performance to make it suitable for similarity search. However, depending on the size of data and change in dimensions, the two above technique demonstrate significantly inferior search performance for data sizes greater than one million and dimensions greater than sixteen. In this paper, we propose a new index-structured PdR-Tree to improve the search performance for high dimensional data such as multimedia data. Test results using simulation data as well as real data demonstrate that PdR-Tree surpasses both the Pyramid-Technique and Spherical Pyramid-Technique in terms of search performance.

  • PDF

Multivariate Region Growing Method with Image Segments (영상분할단위 기반의 다변량 영역확장기법)

  • 이종열
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.273-278
    • /
    • 2004
  • Feature identification is one of the largest issue in high spatial resolution satellite imagery. A popular method associated with this feature identification is image segmentation to produce image segments that are more likely to features interested. Here, it is, proposed that combination of edge extraction and region growing methods for image segments were used to improve the result of image segmentation. At the intial step, an image was segmented by edge detection method. The segments were assigned IDs, and polygon topology of segments were built. Based on the topology, the segments were tested their similarities with adjacent segments using multivariate analysis. The segments that have similar spectral characteristics were merged into a region. The test application shows that the segments composed of individual large, spectrally homogeneous structures, such as buildings and roads, were merged into more similar shape of structures.

  • PDF

Design of Pattern Classification Rule based on Local Linear Discriminant Analysis Classifier by using Differential Evolutionary Algorithm (차분진화 알고리즘을 이용한 지역 Linear Discriminant Analysis Classifier 기반 패턴 분류 규칙 설계)

  • Roh, Seok-Beom;Hwang, Eun-Jin;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.81-86
    • /
    • 2012
  • In this paper, we proposed a new design methodology of a pattern classification rule based on the local linear discriminant analysis expanded from the generic linear discriminant analysis which is used in the local area divided from the whole input space. There are two ways such as k-Means clustering method and the differential evolutionary algorithm to partition the whole input space into the several local areas. K-Means clustering method is the one of the unsupervised clustering methods and the differential evolutionary algorithm is the one of the optimization algorithms. In addition, the experimental application covers a comparative analysis including several previously commonly encountered methods.

Detection of an Invariant Direction using K-means Clustering (K-means 클러스터링을 이용한 불변 방향 검출)

  • Kim, Dal-Hyoun;Lee, Woo-Ram;Jun, Byoung-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.389-392
    • /
    • 2011
  • 본 논문에서는 영상의 색 항등성을 달성하기 위해 본질 영상의 핵심인 불변 방향을 K-means 클러스터링을 이용해 검출하는 개선된 알고리즘을 제안한다. 우선, RGB 영상을 K-means 클러스터링 기법에 의해 다수의 클러스터로 분할한다. 이 때, 클러스터 간의 거리 측정은 유클리드 거리이다. 그리고 분할된 클러스터 중 가장 많은 색을 가진 클러스터만을 x-색도 공간으로 도시하여 해당되는 후보 불변 방향을 계산한다. 검출된 후보 불변 방향은 방향별로 프로젝션된 히스토그램에서 3개 이상의 프로젝션된 데이터를 가진 bin들의 개수가 가장 적은 방향이다. 그 후, 분할된 다른 여러 클러스터에 해당되는 후 보 불변 방향을 계산하여 가장 많은 빈도로 나타나는 방향을 영상의 최종 불변 방향으로 결정한다. 실험에서 Ebner에 의해 제안된 데이터집합을 실험 영상으로 사용하였고, 색항등성 측도를 평가 척도로 사용하였다. 실험 결과, 제안한 기법은 형광성 표면을 가진 형광 데이터집합에 보다 적합하였으며, 엔트로피 기법보다 색항등성이 1.5배 이상 높았다.

  • PDF

Grouping Method Based Query Range Density for Efficient Operation Sharing of Spatial Range Query (공간영역질의의 효율적인 연산 공유를 위한 질의영역 밀집도 기반의 그룹화 기법)

  • Lim, Jung-Hyeun;Shin, Soong-Sun;Baek, Sung-Ha;Lee, Dong-Wook;Kim, Kyung-Bae;Bae, Hae-Young
    • Annual Conference of KIPS
    • /
    • 2009.04a
    • /
    • pp.348-351
    • /
    • 2009
  • 유비쿼터스 사회를 실현하는 핵심기술인 u-GIS 공간정보 기술은 데이터 스트림 처리 시스템(Data Stream Management System)과 지리정보 시스템(Geography Information System)이 결합된 플랫폼인 u-GIS DSMS를 요구한다. u-GIS DSMS는 GeoSeonsor에서 수집되는 센서 테이터와 GIS의 공간정보 데이터를 결합하여 처리하는 공간영역질의가 다수 요구된다. 이런 공간영역질의들은 특정 지역에 밀집하게 등록되는 경향이 있으며, 유사한 프리디킷을 가질 가능성이 높다. 이러한 특징은 공간영역질의가 특정 지역에 밀집되면 다수의 비슷한 연산들이 반복적으로 처리하기 때문에 시스템 성능이 저하 될 것이다. 이를 해결하기 위해 영역질의 색인기법 연구가 활발히 진행되고 있다. 그러나 기존의 VCR-Index와 CQI-Index 기법은 질의영역을 셀 구조나 가상구조로 분할하여 처리하기 때문에 자원 및 연산을 공유 할 수 없어 질의 처리 속도가 현저히 저하되기 때문에 대량의 공간영역질의 처리에는 부적합하다. 그래서 본 논문에서는 공간영역질의의 효율적인 연산 공유를 위한 질의영역 밀집도 기반의 그룹화 기법을 제안한다. 이 기법은 질의영역의 밀집도를 이용하여 공간영역질의들을 그룹화 후 색인을 구성한다. 색인된 영역들의 데이터는 단일 큐로 구성 후 질의들의 프리디킷을 분석하여 자원 및 연산 공유기법을 통해 기존의 기법보다 처리 속도 향상 및 메모리 사용을 감소시켰다.

Voronoi diagram-based sensor node deployment (보로노이 다이어그램 기반 센서 노드 배치)

  • Jeon, Seung-Woo;Hong, Bong-Hee;Kwon, Joon-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06a
    • /
    • pp.411-413
    • /
    • 2012
  • 생강, 양파와 같은 농산물은 재배지에서 우리 식탁에 놓일 때까지 신선도 유지를 위하여 저장고에 넣어 관리한다. 하지만, 현재 설치되어 사용 중에 있는 저장고는 내부에 온/습도를 측정할 수 있는 센서를 부착하고 측정함에도 불구하고, 농산물이 얼거나 부패되는 문제점이 발생하고 있다. 이것은 저장고 내부 센서의 부착이 그만큼 효율적이지 못하다는 것을 반증하고 있는 것이다. 이 문제점을 극복하기 위하여, 본 논문에서는 보로노이 다이어그램을 이용한 센서 배치 기법을 제안한다. 이 기법은 저장고 내부의 공간을 평면 분할하고, 분할된 공간에 센서 배치를 함으로서, 저장고 내부의 온도를 정확히 얻을 수 있을 뿐만 아니라, 배치된 센서 개수의 최소화를 이룰 수 있도록 한다.

History Management for Land Information System (지적관리시스템을 위한 객체이력관리기법)

  • 배종철;이화종;류근호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10a
    • /
    • pp.373-375
    • /
    • 1999
  • 지적 객체는 지적소유변경, 토지 분할/합병, 토지 영역경계 변경 등의 사건이 발생함으로써 비공간 또는 공간 속성이 변경된다. 이러한 변경에 대한 정보는 지적 객체의 이력으로써 지적 관리 시스템에 저장된다. 사용자는 단일 지적 객체가 가지는 전체 이력 또는 특정 시점이나 기간 동안의 지적 객체 상태에 대한 질의를 수행할 수 있고, 과거 지적 객체가 가졌던 속성 및 형태를 확인하거나 현재의 속성 및 상태와 비교하여 지적 객체의 소유변경 내용, 행정구역상 지번/지목의 변경 과정, 영역 경게 변경 과정 등과 같은 정보를 얻을 수 있다. 이 논문은 시간 지원 지적 관리 시스템에 사건 지향 시공간 데이터 모델인 이력 그래프 데이터모델을 적용하고 객체 단위 이력 질의를 위한 시공간 연산자를 제안함으로써 시간 지원 지적 관리 시스템을 위한 객체 이력 관리 기법에 대해 설명한다.

  • PDF

Fast Hilbert R-tree Bulk-loading Scheme using GPGPU (GPGPU를 이용한 Hilbert R-tree 벌크로딩 고속화 기법)

  • Yang, Sidong;Choi, Wonik
    • Journal of KIISE
    • /
    • v.41 no.10
    • /
    • pp.792-798
    • /
    • 2014
  • In spatial databases, R-tree is one of the most widely used indexing structures and many variants have been proposed for its performance improvement. Among these variants, Hilbert R-tree is a representative method using Hilbert curve to process large amounts of data without high cost split techniques to construct the R-tree. This Hilbert R-tree, however, is hardly applicable to large-scale applications in practice mainly due to high pre-processing costs and slow bulk-load time. To overcome the limitations of Hilbert R-tree, we propose a novel approach for parallelizing Hilbert mapping and thus accelerating bulk-loading of Hilbert R-tree on GPU memory. Hilbert R-tree based on GPU improves bulk-loading performance by applying the inversed-cell method and exploiting parallelism for packing the R-tree structure. Our experimental results show that the proposed scheme is up to 45 times faster compared to the traditional CPU-based bulk-loading schemes.

Retouching Method for Watercolor Painting Effect Using Mean Shift Segmentation (Mean Shift Segmentation을 이용한 수채화 효과 생성 기법)

  • Lee, Sang-Geol;Kim, Cheol-Ki;Cha, Eui-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.9
    • /
    • pp.25-33
    • /
    • 2010
  • We propose a retouching method that converts a general photography to a watercolor painting image using bilateral filtering and mean shift segmentation which are mostly used in image processing. The first step is to weaken high frequency components of the image, while preserving the edge of image using the bilateral filtering. And after that we perform DoG(Difference of Gradient) edge extraction and mean shift segmentation respectively from the bilateral filtered image. The DoG edge extraction is performed using luminance component of the image whose RGB color space is transformed into CIELAB space. Experimental result shows that our method can be applied to various types of image and bring better result, especially against the photo taken in daylight.

Performance Evaluation of Clustering Algorithms for Fixed-Grid Spatial Index (고정 그리드 공간 색인을 위한 클러스터링 알고리즘의 성능 평가)

  • 유진영;김진덕;김동현;홍봉희;김장수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10b
    • /
    • pp.32-134
    • /
    • 1998
  • 공간 색인의 하나인 그리드 파일은 공간 데이터 영역을 격자 형태의 셀로 분할하여 구성하는데 특히, 셀들의 크기가 모두 동일한 값으로 고정되어진 것을 고정 그리드(fixed grid)라고 한다. 셀들의 크기가 고정된으로 인해 샐 분할선 상에 객체가 존재하는 경우가 자주 발생하게 되고 이러한 객체들은 하나 이상의 셀에 의해 중복으로 참조된다. 중복 참조 객체는 1/10 시간을 증가시켜 질의 처리 시 성능 저하의 주요한 원인이 된다. 따라서 중복 객체를 효율적으로 처리 할 수 있는 클러스터링 알고리즘의 고안이 필요하다. 이 논문에서는 중복 참조 객체를 처리하기 위한 객체 클러스터링(Object clustering)과 셀 단위로 클러스터하기 위한 셀 클러스터링(Cell clustering) 알고리즘을 구현한다. 그리고 공간 질의 수행 시에 각 클러스터기법들에 대한 성능을 평가한다.