• Title/Summary/Keyword: 공간 복잡도

Search Result 1,901, Processing Time 0.028 seconds

A Study of the Influence of Short-Term Air-Sea Interaction on Precipitation over the Korean Peninsula Using Atmosphere-Ocean Coupled Model (기상-해양 접합모델을 이용한 단기간 대기-해양 상호작용이 한반도 강수에 미치는 영향 연구)

  • Han, Yong-Jae;Lee, Ho-Jae;Kim, Jin-Woo;Koo, Ja-Yong;Lee, Youn-Gyoun
    • Journal of the Korean earth science society
    • /
    • v.40 no.6
    • /
    • pp.584-598
    • /
    • 2019
  • In this study, the effects of air-sea interactions on precipitation over the Seoul-Gyeonggi region of the Korean Peninsula from 28 to 30 August 2018, were analyzed using a Regional atmosphere-ocean Coupled Model (RCM). In the RCM, a WRF (Weather Research Forecasts) was used as the atmosphere model whereas ROMS (Regional Oceanic Modeling System) was used as the ocean model. In a Regional Single atmosphere Model (RSM), only the WRF model was used. In addition, the sea surface temperature data of ECMWF Reanalysis Interim was used as low boundary data. Compared with the observational data, the RCM considering the effect of air-sea interaction represented that the spatial correlations were 0.6 and 0.84, respectively, for the precipitation and the Yellow Sea surface temperature in the Seoul-Gyeonggi area, which was higher than the RSM. whereas the mean bias error (MBE) was -2.32 and -0.62, respectively, which was lower than the RSM. The air-sea interaction effect, analyzed by equivalent potential temperature, SST, dynamic convergence fields, induced the change of SST in the Yellow Sea. In addition, the changed SST caused the difference in thermal instability and kinematic convergence in the lower atmosphere. The thermal instability and convergence over the Seoul-Gyeonggi region induced upward motion, and consequently, the precipitation in the RCM was similar to the spatial distribution of the observed data compared to the precipitation in the RSM. Although various case studies and climatic analyses are needed to clearly understand the effects of complex air-sea interaction, this study results provide evidence for the importance of the air-sea interaction in predicting precipitation in the Seoul-Gyeonggi region.

Improvement of 2-pass DInSAR-based DEM Generation Method from TanDEM-X bistatic SAR Images (TanDEM-X bistatic SAR 영상의 2-pass 위성영상레이더 차분간섭기법 기반 수치표고모델 생성 방법 개선)

  • Chae, Sung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.847-860
    • /
    • 2020
  • The 2-pass DInSAR (Differential Interferometric SAR) processing steps for DEM generation consist of the co-registration of SAR image pair, interferogram generation, phase unwrapping, calculation of DEM errors, and geocoding, etc. It requires complicated steps, and the accuracy of data processing at each step affects the performance of the finally generated DEM. In this study, we developed an improved method for enhancing the performance of the DEM generation method based on the 2-pass DInSAR technique of TanDEM-X bistatic SAR images was developed. The developed DEM generation method is a method that can significantly reduce both the DEM error in the unwrapped phase image and that may occur during geocoding step. The performance analysis of the developed algorithm was performed by comparing the vertical accuracy (Root Mean Square Error, RMSE) between the existing method and the newly proposed method using the ground control point (GCP) generated from GPS survey. The vertical accuracy of the DInSAR-based DEM generated without correction for the unwrapped phase error and geocoding error is 39.617 m. However, the vertical accuracy of the DEM generated through the proposed method is 2.346 m. It was confirmed that the DEM accuracy was improved through the proposed correction method. Through the proposed 2-pass DInSAR-based DEM generation method, the SRTM DEM error observed by DInSAR was compensated for the SRTM 30 m DEM (vertical accuracy 5.567 m) used as a reference. Through this, it was possible to finally create a DEM with improved spatial resolution of about 5 times and vertical accuracy of about 2.4 times. In addition, the spatial resolution of the DEM generated through the proposed method was matched with the SRTM 30 m DEM and the TanDEM-X 90m DEM, and the vertical accuracy was compared. As a result, it was confirmed that the vertical accuracy was improved by about 1.7 and 1.6 times, respectively, and more accurate DEM generation was possible with the proposed method. If the method derived in this study is used to continuously update the DEM for regions with frequent morphological changes, it will be possible to update the DEM effectively in a short time at low cost.

Detection of Irrigation Timing and the Mapping of Paddy Cover in Korea Using MODIS Images Data (MODIS 영상자료를 이용한 관개시기 탐지와 논 피복지도 제작)

  • Jeong, Seung-Taek;Jang, Keun-Chang;Hong, Seok-Yeong;Kang, Sin-Kyu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.2
    • /
    • pp.69-78
    • /
    • 2011
  • Rice is one of the world's staple foods. Paddy rice fields have unique biophysical characteristics that the rice is grown on flooded soils unlike other crops. Information on the spatial distribution of paddy fields and the timing of irrigation are of importance to determine hydrological balance and efficiency of water resource management. In this paper, we detected the timing of irrigation and spatial distribution of paddy fields using the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the NASA EOS Aqua satellite. The timing of irrigation was detected by the combined use of MODIS-based vegetation index and Land Surface Water Index (LSWI). The detected timing of irrigation showed good agreement with field observations from two flux sites in Korea and Japan. Based on the irrigation detection, a land cover map of paddy fields was generated with subsidiary information on seasonal patterns of MODIS enhanced vegetation index (EVI). When the MODISbased paddy field map was compared with a land cover map from the Ministry of Environment, Korea, it overestimated the regions with large paddies but underestimated those with small and fragmented paddies. Potential reasons for such spatial discrepancies may be attributed to coarse pixel resolution (500 m) of MODIS images, uncertainty in parameterization of threshold values for discarding forest and water pixels, and the application of LSWI threshold value developed for paddy fields in China. Nevertheless, this study showed that an improved utilization of seasonal patterns of MODIS vegetation and water-related indices could be applied in water resource management and enhanced estimation of evapotranspiration from paddy fields.

On the field of domestic studies on Western Art History and Western Art Theory (국내 서양미술사, 서양미술이론 연구 장에 관한 연구)

  • Shim, Sang-Yong
    • The Journal of Art Theory & Practice
    • /
    • no.2
    • /
    • pp.75-120
    • /
    • 2004
  • Studies on western art in Korea has been caught in a dilemma that they could deal with only those things which had been arranged according to their 'historical generalization' in their contexts because of the bounds of time and space. It is not trivial that such conditions affect art studies in Korea. Access to the original texts and to their contexts of production is so restricted that the studies on them are prone to he superficial. And it is not independent on the politics of Korean art scene. Such factors are on the background of Korean art's excessive 'assimilation or accordance' with western art. The domestic studies on western art history and art theory have failed to notice the differences in context and Korean art has simply mediated or reproduced the restricted information by those studies. Also the studies on western art in Korea have been made use of as a justifying method of one's own academic domains. In such situations we should lead the studies on western art history and western art theory to a more reflective direction and confirm that the studies should not have any privileges of the realities. And we should try to reform a scholarship which participates in our life and existence. The field of domestic studies on western art history and western art theory should free itself from the invention of objectivity or the neutrality of mechanical reading and turn its eyes to the realities of life where events happens. Constantly suggesting which way Korean art and world art should go has to be the field's new coordinates.

  • PDF

A Localized Secular Variation Model of the Geomagnetic Field Over Northeast Asia Region between 1997 to 2011 (지역화된 동북아시아지역의 지구자기장 영년변화 모델: 1997-2011)

  • Kim, Hyung Rae
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.51-63
    • /
    • 2015
  • I produced a secular variation model of geomagnetic field by using the magnetic component data from four geomagnetic observatories located in Northeast Asia during the years between 1997 and 2011. The Earth's magnetic field varies with time and location due to the dynamics of fluid outer core and the magnetic observatories on the surface measure in time series. To adequately represent the magnetic field or secular variations of the Earth, a spatio-temporal model is required. In making a global model, satellite observations as well as limited observatory data are necessary to cover the regions and time intervals. However, you need a considerable work and time to process a huge amount of the dataset with complicated signal separation procedures. When you update the model, the same amount of chores is demanded. Besides, the global model might be affected by the measurement errors of each observatory that are biased and the processing errors in satellite data so that the accuracy of the model would be degraded. In this study, as considered these problems, I introduced a localized method in modeling secular variation of the Earth's magnetic field over Northeast Asia region. Secular variation data from three Japanese observatories and one Chinese observatory that are all in the INTERMAGNET are implemented in the model valid between 1997 to 2011 with the interval of 6 months. With the resulting model, I compared with the global model called CHAOS-4, which includes the main, secular variation and secular acceleration models between 1997 to 2013 by using the three satellites' databases and INTERMAGNET observatory data. Also, the geomagnetic 'jerk' which is known as a sudden change in the time derivatives of the main field of the Earth, was discussed from the localized secular acceleration coefficients derived from spline models.

A Study on the Component-based GIS Development Methodology using UML (UML을 활용한 컴포넌트 기반의 GIS 개발방법론에 관한 연구)

  • Park, Tae-Og;Kim, Kye-Hyun
    • Journal of Korea Spatial Information System Society
    • /
    • v.3 no.2 s.6
    • /
    • pp.21-43
    • /
    • 2001
  • The environment to development information system including a GIS has been drastically changed in recent years in the perspectives of the complexity and diversity of the software, and the distributed processing and network computing, etc. This leads the paradigm of the software development to the CBD(Component Based Development) based object-oriented technology. As an effort to support these movements, OGC has released the abstract and implementation standards to enable approaching to the service for heterogeneous geographic information processing. It is also common trend in domestic field to develop the GIS application based on the component technology for municipal governments. Therefore, it is imperative to adopt the component technology considering current movements, yet related research works have not been made. This research is to propose a component-based GIS development methodology-ATOM(Advanced Technology Of Methodology)-and to verify its adoptability through the case study. ATOM can be used as a methodology to develop component itself and enterprise GIS supporting the whole procedure for the software development life cycle based on conventional reusable component. ATOM defines stepwise development process comprising activities and work units of each process. Also, it provides input and output, standardized items and specs for the documentation, detailed instructions for the easy understanding of the development methodology. The major characteristics of ATOM would be the component-based development methodology considering numerous features of the GIS domain to generate a component with a simple function, the smallest size, and the maximum reusability. The case study to validate the adoptability of the ATOM showed that it proves to be a efficient tool for generating a component providing relatively systematic and detailed guidelines for the component development. Therefore, ATOM would lead to the promotion of the quality and the productivity for developing application GIS software and eventually contribute to the automatic production of the GIS software, the our final goal.

  • PDF

Estimating Fine Particulate Matter Concentration using GLDAS Hydrometeorological Data (GLDAS 수문기상인자를 이용한 초미세먼지 농도 추정)

  • Lee, Seulchan;Jeong, Jaehwan;Park, Jongmin;Jeon, Hyunho;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.919-932
    • /
    • 2019
  • Fine particulate matter (PM2.5) is not only affected by anthropogenic emissions, but also intensifies, migrates, decreases by hydrometeorological factors. Therefore, it is essential to understand relationships between the hydrometeorological factors and PM2.5 concentration. In Korea, PM2.5 concentration is measured at the ground observatories and estimated data are given to locations where observatories are not present. In this way, the data is not suitable to represent an area, hence it is impossible to know accurate concentration at such locations. In addition, it is hard to trace migration, intensification, reduction of PM2.5. In this study, we analyzed the relationships between hydrometeorological factors, acquired from Global Land Data Assimilation System (GLDAS), and PM2.5 by means of Bayesian Model Averaging (BMA). By BMA, we also selected factors that have meaningful relationship with the variation of PM2.5 concentration. 4 PM2.5 concentration models for different seasons were developed using those selected factors, with Aerosol Optical Depth (AOD) from MODerate resolution Imaging Spectroradiometer (MODIS). Finally, we mapped the result of the model, to show spatial distribution of PM2.5. The model correlated well with the observed PM2.5 concentration (R ~0.7; IOA ~0.78; RMSE ~7.66 ㎍/㎥). When the models were compared with the observed PM2.5 concentrations at different locations, the correlation coefficients differed (R: 0.32-0.82), although there were similarities in data distribution. The developed concentration map using the models showed its capability in representing temporal, spatial variation of PM2.5 concentration. The result of this study is expected to be able to facilitate researches that aim to analyze sources and movements of PM2.5, if the study area is extended to East Asia.

Parameterization and Application of a Forest Landscape Model by Using National Forest Inventory and Long Term Ecological Research Data (국가산림자원조사와 장기생태연구 자료를 활용한 산림경관모형의 모수화 및 적용성 평가)

  • Cho, Wonhee;Lim, Wontaek;Kim, Eun-Sook;Lim, Jong-Hwan;Ko, Dongwook W.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.215-231
    • /
    • 2020
  • Forest landscape models (FLMs) can be used to investigate the complex interactions of various ecological processes and patterns, which makes them useful tools to evaluate how environmental and anthropogenic variables can influence forest ecosystems. However, due to the large spatio-temporal scales in FLMs studies, parameterization and validation can be extremely challenging when applying to new study areas. To address this issue, we focused on the parameterization and application of a spatially explicit forest landscape model, LANDIS-II, to Mt. Gyebang, South Korea, with the use of the National Forest Inventory (NFI) and long-term ecological research (LTER) site data. In this study, we present the followings for the biomass succession extension of LANDIS-II: 1) species-specific and spatial parameters estimation for the biomass succession extension of LANDIS-II, 2) calibration, and 3) application and validation for Mt. Gyebang. For the biomass succession extension, we selected 14 tree species, and parameterized ecoregion map, initial community map, species growth characteristics. We produced ecoregion map using elevation, aspect, and topographic wetness index based on digital elevation model. Initial community map was produced based on NFI and sub-alpine survey data. Tree species growth parameters, such as aboveground net primary production and maximum aboveground biomass, were estimated from PnET-II model based on species physiological factors and environmental variables. Literature data were used to estimate species physiological factors, such as FolN, SLWmax, HalfSat, growing temperature, and shade tolerance. For calibration and validation purposes, we compared species-specific aboveground biomass of model outputs and NFI and sub-alpine survey data and calculated coefficient of determination (R2) and root mean square error (RMSE). The final model performed very well, with 0. 98 R2 and 8. 9 RMSE. This study can serve as a foundation for the use of FLMs to other applications such as comparing alternative forest management scenarios and natural disturbance effects.

The Production of Sex Determined Cattle by Embryonic Sexing Using Fluorescence In Situ Hybridization Technique (FISH 기법을 이용한 소 수정란의 성감별과 산자 생산)

  • Sohn, S.H.;Park, H.
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2007.05a
    • /
    • pp.39-50
    • /
    • 2007
  • Sexing from bovine embryos fertilized in vitro implicates a possibility of the sex controlled cattle production. This study was carried out to produce the sex determined cattle through the embryonic sexing by fluorescence in situ hybridization (FISH) technique. FISH was achieved in in vitro fertilized bovine embryos using a bovine Y-specific DNA probe constructed from the btDYZ-1 sequence. Using this probe, a male-specific signal was detected on 100% of Y-chromosome bearing metaphase specimens. The analyzable rate of embryonic sexing by FISH technique was about 93% (365/393) regardless of embryonic stages. As tested single blastomere by FISH and then karyotype with their biopsied embryos, the accuracy of sex determination with FISH was 97.6%. We tried the embryo transfer with sex determined embryos on 15 cattle. Among them, the 5 cattle delivered calf with expected sex last year.

  • PDF

Principal component analysis in C[11]-PIB imaging (주성분분석을 이용한 C[11]-PIB imaging 영상분석)

  • Kim, Nambeom;Shin, Gwi Soon;Ahn, Sung Min
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.1
    • /
    • pp.12-16
    • /
    • 2015
  • Purpose Principal component analysis (PCA) is a method often used in the neuroimagre analysis as a multivariate analysis technique for describing the structure of high dimensional correlation as the structure of lower dimensional space. PCA is a statistical procedure that uses an orthogonal transformation to convert a set of observations of correlated variables into a set of values of linearly independent variables called principal components. In this study, in order to investigate the usefulness of PCA in the brain PET image analysis, we tried to analyze C[11]-PIB PET image as a representative case. Materials and Methods Nineteen subjects were included in this study (normal = 9, AD/MCI = 10). For C[11]-PIB, PET scan were acquired for 20 min starting 40 min after intravenous injection of 9.6 MBq/kg C[11]-PIB. All emission recordings were acquired with the Biograph 6 Hi-Rez (Siemens-CTI, Knoxville, TN) in three-dimensional acquisition mode. Transmission map for attenuation-correction was acquired using the CT emission scans (130 kVp, 240 mA). Standardized uptake values (SUVs) of C[11]-PIB calculated from PET/CT. In normal subjects, 3T MRI T1-weighted images were obtained to create a C[11]-PIB template. Spatial normalization and smoothing were conducted as a pre-processing for PCA using SPM8 and PCA was conducted using Matlab2012b. Results Through the PCA, we obtained linearly uncorrelated independent principal component images. Principal component images obtained through the PCA can simplify the variation of whole C[11]-PIB images into several principal components including the variation of neocortex and white matter and the variation of deep brain structure such as pons. Conclusion PCA is useful to analyze and extract the main pattern of C[11]-PIB image. PCA, as a method of multivariate analysis, might be useful for pattern recognition of neuroimages such as FDG-PET or fMRI as well as C[11]-PIB image.

  • PDF