DOI QR코드

DOI QR Code

Agent Model Construction Methods for Simulatable CPS Configuration

시뮬레이션 가능한 CPS 구성을 위한 에이전트 모델 구성 방법

  • Jinmyeong Lee ;
  • Hong-Sun Park ;
  • Chan-Woo Kim ;
  • Bong Gu Kang (Korea Institute of Industrial Technology)
  • 이진명 (한국생산기술연구원) ;
  • 박홍선 (한양대학교 대학원 산업경영공학과) ;
  • 김찬우 (한양대학교 대학원 산업경영공학과) ;
  • 강봉구
  • Received : 2024.02.21
  • Accepted : 2024.06.11
  • Published : 2024.06.30

Abstract

A cyber-physical system is a technology that connects the physical systems of a manufacturing environment with a cyber space to enable simulation. One of the major challenges in this technology is the seamless communication between these two environments. In complex manufacturing processes, it is crucial to adapt to various protocols of manufacturing equipment and ensure the transmission and reception of a large volume of data without delays or errors. In this study, we propose a method for constructing agent models for real-time simulation-capable cyberphysical systems. To achieve this, we design data collection units as independent agent models and effectively integrate them with existing simulation tools to develop the overall system architecture. To validate the proposed structure and ensure reliability, we conducted empirical testing by integrating various equipment from a real-world smart microfactory system to assess the data collection capabilities. The experiments involved testing data delay and data gaps related to data collection cycles. As a result, the proposed approach demonstrates flexibility by enabling the application of various internal data collection methods and accommodating different data formats and communication protocols for various equipment with relatively low communication delays. Consequently, it is expected that this approach will promote innovation in the manufacturing industry, enhance production line efficiency, and contribute to cost savings in maintenance.

사이버물리시스템은 제조 환경의 물리적 시스템과 가상 공간을 연결하여 시뮬레이션을 가능하게 하는 기술이다. 이 기술의 주요 과제 중 하나는 두 환경 간 원활한 통신을 구현하는 것으로 복잡한 제조 공정에서는 다양한 제조설비의 프로토콜에 대응할 수 있어야 하며, 다수의 데이터를 지연과 오류 없이 송수신할 수 있어야 한다. 이에 본 연구에서는 실시간 시뮬레이션 가능한 사이버물리시스템 구성을 위한 에이전트 모델 구성 방법을 제안한다. 이를 위해 데이터 수집부를 독립된 에이전트 모델로 설계한 후, 이를 기존 시뮬레이션 도구와 효과적으로 통합하여 전체 구조를 개발하였다. 제안한 구조에 대한 구동검증과 신뢰성 파악을 위해 실제 스마트 의류생산 마이크로 팩토리 시스템의 여러 장비와 연동하여 데이터 수집 기능에 대한 실증을 수행했다. 실증은 데이터 수집 주기와 관련된 데이터 지연과 및 데이터 결측에 대한 실험을 진행하였다. 결과적으로 제안된 CPS 구성 방법은 비교적 큰 통신 지연 없이 다양한 내부 데이터 수집과 다양한 장비의 데이터 포맷 및 통신 프로토콜에 적용 가능한 유연성을 보여주며, 비교적 간단하게 CPS 구성을 가능하게 한다. 따라서 제조 업계에서 혁신을 촉진하고 생산 라인의 효율성을 향상시키며, 유지보수 비용을 절감하는 데 도움이 될 것으로 기대된다.

Keywords

Acknowledgement

This study has been conducted with the support of the Korea Institute of Industrial Technology as "Development of microfactory-based technology for future smartwear manufacturing (KITECH EH-24-0006)".

References

  1. A. Bagula, O. Ajayi, and H. Maluleke, "Cyber physical systems dependability using cps-iot monitoring," Sensors, vol. 21, no. 8, pp. 2761, 2021.
  2. A. Lammle, C. Seeber, and E. Kogan, "Automatic simulation model implementation of robotic production cells in a 3D manufacturing simulation environment," Procedia CIRP, vol. 91, pp. 336-341, 2020.
  3. B. Chen, K. L. Butler-Purry, A. Goulart et al., "Implementing a real-time cyber-physical system test bed in RTDS and OPNET." 2014 North American Power Symposium (NAPS), Washington, pp. 1-6, 2014
  4. B. S. Kumar, V. Mahesh, and B. S. Kumar, "Modeling and analysis of flexible manufacturing system with FlexSim," International Journal of Computational Engineering Research, vol. 5, no. 10, pp. 1-6, 2015.
  5. G. Zhou, C. Zhang, Z. Li et al., "Knowledge-driven digital twin manufacturing cell towards intelligent manufacturing," International Journal of Production Research, vol. 58, no. 4, pp. 1034-1051, 2020.
  6. H. Arnarson, B. Solvang, and B. Shu, "The application of virtual reality in programming of a manufacturing cell." 2021 IEEE/SICE International Symposium on System Integration (SII), Fukushima, pp. 213-218, 2021.
  7. H. Neema, T. Roth, C. Wang et al., "Integrating Multiple HLA Federations for Effective Simulation-Based Evaluations of CPS." 2022 IEEE Workshop on Design Automation for CPS and IoT (DESTION), Milano, pp. 19-26, 2022.
  8. H. Neema, J. Sztipanovits, C. Steinbrink et al., "Simulation integration platforms for cyber-physical systems." In Proceedings of the Workshop on Design Automation for CPS and IoT, pp. 10-19, 2019.
  9. H. Neema, Large-scale integration of heterogeneous simulations, Ph.D Thesis, Vanderbilt University, pp. 155, 2018.
  10. H. Y. Lin, and F. N. Yang, "Design and implementation of a CPS-based predictive maintenance and automated management platform," IET Cyber-Physical Systems: Theory & Applications, vol. 5, no. 1, pp. 100-109, 2020.
  11. I. S. Sacala, E. Pop, M. A. Moisescu et al., "Enhancing cps architectures with SOA for industry 4.0 enterprise systems." 2021 29th Mediterranean Conference on Control and Automation (MED), Bari, pp. 71-76, 2021.
  12. J. Sztipanovits, T. Bapty, S. Neema et al., "Open META: A model-and component-based design tool chain for cyber-physical systems." The Systems perspective in Computing: ETAPS Workshop(FPS 2014), Grenoble, pp. 235-248, 2014.
  13. K. K. Liraviasl, H. ElMaraghy, M. Hanafy et al., "A framework for modelling reconfigurable manufacturing systems using hybridized discrete-event and agent-based simulation," IFAC-Papers OnLine, vol. 48, no. 3, pp. 1490-1495, 2015.
  14. K. Mahmood, T. Otto, J. Golova et al., "An approach to analyze the performance of advanced manufacturing environment," Procedia CIRP, vol. 93, pp. 628-633, 2020.
  15. K. Wan, K. Man, and D. Hughes, "Specification, Analyzing Challenges and Approaches for Cyber-Physical Systems (CPS)," Engineering Letters, vol. 18, no. 3, 2010.
  16. L. Parv, B. Deaky, M. D. Nasulea et al., "Agent-based simulation of value flow in an industrial production process," Processes, vol. 7, no. 2, pp. 82, 2019.
  17. M. Glatt, C. Sinnwell, L. Yi et al., "Modeling and implementation of a digital twin of material flows based on physics simulation," Journal of Manufacturing Systems, vol. 58, pp. 231-245, 2021.
  18. R. Phillips, and B. Montalvo, "Using emulation to debug control logic code." Proceedings of the 2010 Winter Simulation Conference, Baltimore, pp. 1673-1677, 2010.
  19. R. Sekaran, A. Kumar Munnangi, S. Rajeyyagari et al., "Ant colony resource optimization for Industrial IoT and CPS," International Journal of Intelligent Systems, vol. 37, no. 12, pp. 10513-10532, 2022.
  20. S. Luscinski, and V. Ivanov, "A Simulation Study of Industry 4.0 Factories Based on the Ontology on Flexibility with Using Flexsim® Software," Management and Production Engineering Review, vol. 11, no. 3, pp. 74-83, 2020.
  21. S. M. Dibaji, M. Pirani, D. B. Flamholz et al., "A systems and control perspective of CPS security," Annual reviews in control, vol. 47, pp. 394-411, 2019.
  22. S. Yang, Z. Xu, G. Li et al., "Assembly transport optimization for a reconfigurable flow shop based on a discrete event simulation," Advances in Production Engineering & Management, vol. 15, no. 1, pp. 69-80, 2020.
  23. T. Margaria, H. A. A. Chaudhary, I. Guevara et al., "The interoperability challenge: building a modeldriven digital thread platform for CPS." International Symposium on Leveraging Applications of Formal Methods, Rhodes, pp. 393-413, 2021.
  24. W. Sun, J. Wu, G. Xiao et al., "Research on selection of commercial industrial simulation software oriented to virtual commissioning." Journal of Physics: Conference Series. vol. 1906. no. 1, p. 012052, 2021.
  25. X. Zhu, F. Qiao, and Q. Cao, "Industrial big data -based scheduling modeling framework for complex manufacturing system," Advances in Mechanical Engineering, vol. 9, no. 8, 2017.
  26. Y. Jeong, A. Singh, M. Zafarzadeh et al., "Data-driven manufacturing simulation: towards a CPS-based approach," SPS2020 Proceedings of the Swedish Production Symposium, Jonkoping, pp. 586-596, 2020.