DOI QR코드

DOI QR Code

Overview of Research Trends in Estimation of Forest Carbon Stocks Based on Remote Sensing and GIS

원격탐사와 GIS 기반의 산림탄소저장량 추정에 관한 주요국 연구동향 개관

  • Kim, Kyoung-Min (Division Forest Resources Information, Korea Forest Research Institute) ;
  • Lee, Jung-Bin (Division Forest Resources Information, Korea Forest Research Institute) ;
  • Kim, Eun-Sook (Division Forest Resources Information, Korea Forest Research Institute) ;
  • Park, Hyun-Ju (Environmental Strategy Research Group, Korea Environment Institute) ;
  • Roh, Young-Hee (Dept. Geography, Seoul National University) ;
  • Lee, Seung-Ho (Division Forest Resources Information, Korea Forest Research Institute) ;
  • Park, Key-Ho (Dept. Geography, Seoul National University) ;
  • Shin, Hyu-Seok (Institute for Korean Regional Studies, Seoul National University)
  • 김경민 (국립산림과학원 산림자원정보과) ;
  • 이정빈 (국립산림과학원 산림자원정보과) ;
  • 김은숙 (국립산림과학원 산림자원정보과) ;
  • 박현주 (한국환경정책.평가연구원 환경전략연구본부) ;
  • 노영희 (서울대학교 지리학과) ;
  • 이승호 (국립산림과학원 산림자원정보과) ;
  • 박기호 (서울대학교 지리학과) ;
  • 신휴석 (서울대학교 국토문제 연구소)
  • Received : 2011.05.16
  • Accepted : 2011.08.16
  • Published : 2011.09.30

Abstract

Forest carbon stocks change due to land use change is an important data required by UNFCCC(United Nations framework convention on climate change). Spatially explicit estimation of forest carbon stocks based on IPCC GPG(intergovernmental panel on climate change good practice guidance) tier 3 gives high reliability. But a current estimation which was aggregated from NFI data doesn't have detail forest carbon stocks by polygon or cell. In order to improve an estimation remote sensing and GIS have been used especially in Europe and North America. We divided research trends in main countries into 4 categories such as remote sensing, GIS, geostatistics and environmental modeling considering spatial heterogeneity. The easiest way to apply is combination NFI data with forest type map based on GIS. Considering especially complicated forest structure of Korea, geostatistics is useful to estimate local variation of forest carbon. In addition, fine scale image is good for verification of forest carbon stocks and determination of CDM site. Related domestic researches are still on initial status and forest carbon stocks are mainly estimated using k-nearest neighbor(k-NN). In order to select suitable method for forest in Korea, an applicability of diverse spatial data and algorithm must be considered. Also the comparison between methods is required.

토지이용변화에 따른 산림탄소저장량 변화는 기후변화협약에서 요구하는 주요 자료 중 하나이다. IPCC 우수실행지침(intergovernmental panel on climate change good practice guidance, IPCC GPG) 수준 3에 근거하여 공간적으로 명확한 산림탄소저장량을 추정하게 되면 높은 신뢰도를 확보할 수 있다. 그러나 기존의 추정 방법은 표본점(sample plot) 단위의 국가산림자원조사 (national forest inventory, NFI) 자료만을 이용하여 행정구역별 평균을 집계하는 것으로 폴리곤 혹은 셀 단위의 상세한 탄소저장량을 파악할 수 없었다. 이를 보완하기 위해 유럽, 북미 등에서는 NFI 자료, 원격탐사 및 GIS 기술을 결합하여 산림탄소저장량을 추정하기 위한 노력이 활발히 이루어져왔다. 주요국의 연구 동향을 활용 기법에 따라 분류해보면 원격탐사, GIS, 지구통계 및 환경변수 모델링 등 크게 4가지 범주로 나눌 수 있다. 이 중 가장 손쉽게 국내 적용을 고려해 볼 수 있는 방법은 NFI 자료와 임상도를 결합하는 GIS 기반의 방법이다. 특히, 복잡한 수종 구성을 가지고 있는 국내 산림 환경 특성을 고려할 때 국지적 변이 추정에 유용한 지구통계 기법의 활용성이 기대된다. 아울러, 고해상도 영상의 활용은 산림탄소저장량 추정의 검증 및 탄소배출권 확보를 위한 CDM(clean development mechanism, 청정개발체제) 사업 적지 선정 등에 유용할 것으로 판단된다. 국내 관련 연구는 아직 초기 단계로 최근린 기법(k-nearest neighbor, k-NN)의 적용성을 검토하는 연구가 주를 이루고 있으나 국내 산림 환경에 적합한 방법론의 선정을 위해서는 보다 다양한 공간 자료와 알고리즘의 적용성이 검토되고 방법론 간의 비교 연구가 필요하다.

Keywords

References

  1. 곽두안, 이우균, 손민호. 2005. 개체목 및 임분 조사를 위한 LiDAR 응용에 관한 연구. 한국임학회지 94(6):431-440.
  2. 권순덕, 서정호, 손영모, 박영규. 2005. 산지전용에 따른 우리나라의 임목바이오매스 탄소 배출량. 임산에너지 24(2):10-15.
  3. 김경민, 김은숙, 이정빈, 노영희, 박현주, 이승호, 박기호. 2010. 지상부 바이오매스 공간 분포 추정에 관한 주요국 연구동향 분석. 국립산림과학원 연구자료 제 389호. 서울. 109쪽.
  4. 김경민, 이정빈, 김은숙, 박현주, 정재훈, 이승호, 박기호, 허준. 2011. RS와 GIS를 이용한 3가지 방법론에 의한 산림탄소저장량 추정 비교 연구. 2011 한국지리정보학회 춘계학술발표논문 초록집. 264-266쪽.
  5. 김은숙, 김경민, 이정빈, 이승호. 2011. 국가산림자원조사 자료와 임상도를 활용한 지상부 산림바이오매스의 공간규모 확장. 2011 대한원격탐사학회 춘계학술발표논문 초록집. 360-365쪽.
  6. 김현. 2010. GIS. RS 기법을 이용한 전라북도 산림의 바이오매스 추정. 전북대학교대학원 박사학위논문. 157쪽.
  7. 박동환. 2011. GIS와 원격탐사기술을 이용한 산림바이오매스 자원량 평가 -강원대학교 학술림을 대상으로-. 강원대학교대학원 석사학위논문. 56쪽.
  8. 박현주. 2011. 공간통계를 이용한 산림탄소저장량 추정방법에 관한 연구. 서울대학교대학원 석사학위논문. 91쪽.
  9. 산림청. 2001. 임업 및 임학 사전. 1341쪽.
  10. 산림청. 2009. 기후변화와 산림. 244쪽.
  11. 손영모. 2009. 우리나라 소나무 탄소계수 개발. 산림과학정보 vol. 217. 8-9쪽.
  12. 손영모, 이경학, 김래현. 2007. 우리나라 산림 바이오매스 추정. 한국임학회지 96(4):477-482.
  13. 이경학, 구교상, 김영수, 김철민, 손영모, 심국보, 안병준, 이윤영, 신만용, 박인협. 2004. IPCC 우수실행지침 -토지이용, 토지이용변 화 및 임업- 국립산림과학원 연구자료 제 231호, 서울. 424쪽.
  14. 이승호, 김철민, 원현규, 김경민, 조현국. 2004. Landsat TM 위성영상을 이용한 산림자원량 산정. 한국임학회 학술연구발표논문집. 250-252쪽.
  15. 임종수, 공지수, 김성호, 신만용. 2007. k-NN 기법을 이용한 강원도 평창군의 산림주제도 작성과 산림통계량 추정. 한국임학회지 96(3):259-268
  16. 임종수, 한원성, 황주호, 정상영, 조현국, 신만용. 2009. 위성영상자료 및 국가 산림자원조사 자료를 이용한 산림 바이오매스 추정. 대한원격탐사학회지 25(4):311-320. https://doi.org/10.7780/kjrs.2009.25.4.311
  17. 장안진, 김형태. 2008. 항공사진과 Lidar 데이터를 이용한 산림지역의 바이오매스 추정에 관한 연구. 한국지리정보학회지 11(3): 166-173.
  18. 장안진, 유기윤, 김용일, 이병길. 2006. 컬러항공사진과 LiDAR 데이터를 이용한 수목 개체 및 수고 추정. 대한원격탐사학회지 22(6):543-551. https://doi.org/10.7780/kjrs.2006.22.6.543
  19. 정상영, 임종수, 조현국, 정진현, 김성호, 신만용. 2009. 산림 바이오매스 변환표와 위성영상을 이용한 무주군의 산림 바이오매스추정. 한국임학회지 98(4):409-416.
  20. 정재훈, 허준, 유수홍, 김경민, 이정빈. 2010. kNN 알고리즘과 계절별 Landsat TM 위성영상을 이용한 단양군 지역의 지상부 바이오매스 탄소저장량 추정. 한국지형공간정보학회지 18(4):119-129.
  21. 정희석. 2005. 목재용어사전. 서울대학교 출판부. 345쪽.
  22. 최성득. 2004. 산림인벤토리와 원격탐사 기법을 이용한 한국 산림탄소의 분포와 거동 연구포항공과대학교 대학원 박사학위논문. 147쪽.
  23. 황상일, 명수정, 조공장, 조한나. 2009. 식생과 토양의 역할을 고려한 저탄소 토지이용계획 수립방안(I). 환경정책평가연구원. 113쪽.
  24. Baccini, A., M.A. Friedl, C.E. Woodcock and R. Warbingto. 2004. Forest biomass estimation over regional scales using multisource data. Geophysical Research Letters 31(10):L10501. https://doi.org/10.1029/2004GL019782
  25. Blackard, J.A., M.V. Finco, E.H. Helmer, G.R. Holden, M.L. Hoppus, D.M. Jacobs, A.J. Lister, G.G. Moisen, M.D. Nelson, R. Riemann, B. Ruefenacht, D. Salajanu, D.L. Weyermann, K.C. Winterberger, T.J. Brandeis, R.L. Czaplewski, R.E. McRoberts, P.L. Patterson and P.P. Tymcio. 2008. Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sensing of Environment 112:1658-1677. https://doi.org/10.1016/j.rse.2007.08.021
  26. Brown, I.F., L.A. Martinelli, W.W. Thomas, M.Z. Moreira, C.A.C. Ferreira and R.A. Victoria. 1995. Uncertainty in the biomass of Amazonian forests: an example from Randonia, Brazil. Forest Ecology and Management 75:175-189. https://doi.org/10.1016/0378-1127(94)03512-U
  27. Brown, S., A.J.R. Gillespie and A.E. Lugo. 1989. Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science 35:881-902.
  28. Brown, S. and G. Gaston. 1995. Use of forest inventories and geographic information systems to estimate biomass density of tropical forests: Application to tropical Africa. Environmental Monitoring and Assessment 38:157-168. https://doi.org/10.1007/BF00546760
  29. Brown, S. and L.R. Iverson. 1992. Biomass estimates for tropical forests. World Resource Review 4:366-384.
  30. Brown, S., L.R. Iverson and A.E. Lugo. 1994. Land-use and biomass changes of forests in Peninsular Malaysia from 1972 to 1982: GIS approach. In: V.H. Dale(ed.). Effects of Land-use Change on Atmospheric CO2 Concentrations: South and Southeast Asia as a Case Study. Springer, New York, pp.117-143.
  31. Civco, D. 1989. Topographic normalization of Landsat Thematic Mapper digital imagery. Photogrammetric Engineering and Remote Sensing 55:1303-1309.
  32. Colby, J.D. 1991. Topographic normalization in rugged terrain. Photogrammetric Engineering and Remote Sensing 57:531-537.
  33. Conese, C., G. Maracchi and F. Maselli. 1993. Improvement in maximum likelihood classification performance on highly rugged terrain using principal component analysis. International Journal of Remote Sensing 14(7):1371-1382. https://doi.org/10.1080/01431169308953963
  34. Conese, C., G. Maracchi, F. Miglietta, F. Maselli and V.M. Sacco. 1988. Forest classification by principal component analyses of TM data. International Journal of Remote Sensing 9:1597-1612. https://doi.org/10.1080/01431168808954963
  35. Dees, M., J. Duvenhorst, C.P. Gross and B. Koch. 2000. Combining remote sensing data sources and terrestrial sample-based inventory data for the use in forest management inventories. Proceeding of XIX ISPRS Congress. Commission VII. Amsterdam, 16-22 July 2000 pp.355-362.
  36. Dong, J., R.K. Kaufmann, R.B. Myneni, C.J. Tucker, P.E. Kauppi, J. Liski, W. Buermann, V. Alexeyev and M.K. Hughes. 2003. Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks. Remote Sensing of Environment 84(3):393-410. https://doi.org/10.1016/S0034-4257(02)00130-X
  37. Ellenwood, J.R. and F.J. Krist. 2007. Building a nationwide 30-meter forest parameter dataset for forest health risk assessments. ForestSat'07 Conference. Montpellier, France, Nov. 5-7, 2007.
  38. Fang, J., G. Wang, G. Liu and S. Xu. 1998. Forest biomass of China: an estimate based on the biomass-volume relationship. Ecological Applications 8(4):1084-1091.
  39. FAO. 2004. Assessing Carbon Stocks and Modeling Win-Win Scenarios of Carbon Sequestration Through Land-Use Change. 156pp.
  40. Fazakas, Z., M. Nilsson and H. Olsson. 1999. Regional forest biomass and wood volume estimation using satellite data and ancillary data. Agricultural and Forest Meteorology 98-99:417-425. https://doi.org/10.1016/S0168-1923(99)00112-4
  41. Foody, G.M. 2003. Remote sensing of tropical forest environments: towards the monitoring of environmental resources for sustainable development. International Journal of Remote Sensing 24(20):4035-4046. https://doi.org/10.1080/0143116031000103853
  42. Fournier, R.A., J.E. Luther, L. Guindon, M.C. Lambert, D. Piercey, R.J. Hall and M.A. Wulder. 2003. Mapping aboveground tree biomass at the stand level from inventory information: test cases in Newfoundland and Quebec. Canadian Journal of Forest Resources 33:1846-1863. https://doi.org/10.1139/x03-099
  43. Franklin, S.E., D.R. Connery and J.A. Williams. 1994. Classification of alpine vegetation using Landsat Thematic Mapper, SPOT HRV and DEM data. Canadian Journal of Remote Sensing 20(1):49-58.
  44. Fraser, R.H. and Z. Li. 2002. Estimating fire-related parameters in boreal forest using SPOT VEGETATION. Remote Sensing of Environment 82:95-110. https://doi.org/10.1016/S0034-4257(02)00027-5
  45. Freeman, E.A. and G.G. Moisen. 2006. Evaluating Kriging as a tool to improve moderate resolution maps of forest biomass. Environmental Monitoring and Assessment 128:395-410.
  46. Fuchs, H., P. Magdon, C. Kleinn and H. Flessa. 2009. Estimating aboveground carbon in a catchment of the Siberian forest tundra: combining satellite imagery and field inventory. Remote Sensing of Environment 113(3):518-531. https://doi.org/10.1016/j.rse.2008.07.017
  47. Gjertsen, A.K. 2007. Accuracy of forest mapping based on Landsat TM data and a kNN-based method. Remote Sensing of Environment 110(4):420-430. https://doi.org/10.1016/j.rse.2006.08.018
  48. Goodenough, D.G., R. Sobie, R. Impey, H. Chen, A. Agarwal, R. Desmarais, I. Gable, A. Guan, A. Charbonneau, G. Hobart, D. Vanderster and W. Podaima. 2008. Service oriented scientific grid computing. http://cgs.saforah.org/attachment/wiki/PaPres/Goodenough-BCNet-NEP.ppt.
  49. Haapanen, R., K. Lehtinen, J. Miettinen, M.E. Bauer and A.R. Ek. 2001. Progress in Adapting k-NN Methods for Forest Mapping and Estimation Using the New Annual Forest Inventory and Analysis Data. USDA. 87pp.
  50. Hall, R.J., D.T. Price, R.M. Siltanem, Y. Wang, R. Fournier, R.H. Fraser and J.E. Luther. 2001. Assessing the Role of Environmental and Remote Sensing Variables in Modeling Canada's Forest Biomass. 23rd Canadian Remote Sensing Symposium. Ste Foy, Quebec, pp.465-471.
  51. Hall, R.J., E.J. Arsenault, P. Boudewyn, M.Filiatrault, M.D. Gillis, A. Beaudion, J.E. Luther and M.A. Wulder. 2009. Creating a National Forest Biomass Map of Canada by Integrating Satellite Data and Models. GOFC-GOLD Biomass meeting.
  52. Halme, M. and E. Tomppo. 2001. Improving the accuracy of multisource forest inventory estimates by reducing plot location error-a multicriteria approach. Remote Sensing of Environment 78:321-327. https://doi.org/10.1016/S0034-4257(01)00227-9
  53. Hame, T., A. Salli, K. Andersson and A. Lohi. 1997. A new methodology for the estimation of biomass of coniferdominated boreal forest using NOAA AVHRR data. International Journal of Remote Sensing 18(15):3211-3243. https://doi.org/10.1080/014311697217053
  54. Harrell, P.A., E.S. Kasischke, L.L. Bourgeau-Chavez, E.M. Haney and N.L. Christensen. 1997. Evaluation of approaches to estimating aboveground biomass in southern pine forests using SIR-C data. Remote Sensing of Environment 59(2):223-233. https://doi.org/10.1016/S0034-4257(96)00155-1
  55. Holben, B.N. and C.O. Justice. 1981. An examination of spectral band ratioing to reduce the topographic effect on remotely sensed data. International Journal of Remote Sensing 2(2):115-123. https://doi.org/10.1080/01431168108948349
  56. Huiyan, G., D. Limin, W. Gang, X. Dong, W. Shunzhong and W. Hui. 2006. Estimation of forest volumes by integrating Landsat TM imagery and forest inventory data, Science in China. Series E Technological Sciences 49(I):54-62. https://doi.org/10.1007/s11431-006-8107-z
  57. IPCC. 2003. Good Practice Guidance for Land Use, Land-Use Change and Forestry.
  58. Iverson, L.R., S. Brown, A. Prasad, H. Mitasova, A.J.R. Gillespie and A.E. Lugo. 1994. Use of GIS for estimating potential and actual forest biomass for continental South and Southeast Asia. In: V.H. Dale(ed.). Effects of Land-Use Change on Atmospheric CO2 Concentrations: South and Southeast Asia as a Case Study. Springer, New York, pp.67-116.
  59. Kimmins, J.P. 1997. Forest Ecology 2nd ed. Prentice-Hall. 596pp.
  60. Labrecque, S., R.A. Fournier, J.E. Luther and D. Piercey. 2006. A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland. Forest Ecology and Management 226:129-144. https://doi.org/10.1016/j.foreco.2006.01.030
  61. Lefsky, M.A., D. Harding, W.B. Cohen, G. Parker and H.H. Shugart. 1999. Surface lidar remote sensing of basal area and biomass in deciduous forest of eastern Maryland, USA. Remote Sensing of Environment 67(1):83-98. https://doi.org/10.1016/S0034-4257(98)00071-6
  62. LeMay, V., J. Maedel and N.C. Coops. 2008. Estimating stand structural details using nearest neighbor analyses to link ground data, forest cover maps, and Landsat imagery. Remote Sensing of Environment 112:2578-2591. https://doi.org/10.1016/j.rse.2007.12.007
  63. Li, X. 2011. Biomass and Carbon Storage of Korean Forests. Ph.D. Thesis, Kangwon National University, Korea. 134pp.
  64. Lu, D. 2005. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon Basin. International Journal of Remote Sensing 26(12): 2509-2525. https://doi.org/10.1080/01431160500142145
  65. Lu, D. 2006. The potential and challenge of remote sensing-based biomass estimation. International Journal of Remote Sensing 27(7):1297-1328. https://doi.org/10.1080/01431160500486732
  66. Lufafa, A., I. Diedhiou, S.A.N. Samba, M. Sene, M. Khouma, F. Kizito, R.P. Dick, E. Dossa and J.S. Noller. 2008. Carbon stocks and patterns in native shrub communities of Senegal's Peanut Basin. Geoderma 146:75-82. https://doi.org/10.1016/j.geoderma.2008.05.024
  67. Luther, J.E., R.A. Fournier, R.J. Hall, C.-H. Ung, L. Guindon, D.E. Piercey, M.-C. Lambert and A. Beaudoin. 2002. A strategy for mapping Canada's forest biomass with Landsat TM imagery. Geoscience and Remote Sensing Symposium, IGARSS '02. 2002 IEEE International pp.1312-1315.
  68. Magclae-Macandog, D.B., M.E.M. Delgado, E.Ty and J.R.T. Villarin. 2006. A GIS-based model to improve estimation of aboveground biomass of secondary forests in the Philippines. Journal of Tropical Forest Science 18(1):8-21.
  69. Magnussen, S., R.E. McRoberts, E. Tomppo. 2009. Model-based mean square error estimators for k-nearest neighbour predictions and applications using remotely sensed data for forest inventories. Remote Sensing of Environment 113(3) : 476-488. https://doi.org/10.1016/j.rse.2008.04.018
  70. Mcroberts, R.E., E.O. Tomppo, A.O. Finley and J. Heikkinen. 2007. Estimating areal means and variances of forest attributes using the k-nearest neighbors technique and satellite imagery. Remote Sensing of Environment 111(4):466-480. https://doi.org/10.1016/j.rse.2007.04.002
  71. Meng, Q., C. Cieszewski and M. Madden. 2009. Large area forest inventory using Landsat ETM+: a geostatistical approach. ISPRS Journal of Photogrammetry and Remote Sensing 64(1):27-36. https://doi.org/10.1016/j.isprsjprs.2008.06.006
  72. Mickler, R.A., T.S. Earnhardt and J.A. Moore. 2002. Regional estimation of current and future forest biomass. Environmental Pollution 116:S7-S16. https://doi.org/10.1016/S0269-7491(01)00241-X
  73. Naugle, B.I. and J.D. Lashlee. 1992. Alleviating topographic influences on land-cover classifications for mobility and combat modeling. Photogrammetric Engineering and Remote Sensing of Environment 48:1217-1221.
  74. Nijland, W., E.A. Addink, S.M.D. Jong and F.D.V.d. Meer. 2009. Optimizing spatial image support for quantitative mapping of natural vegetation. Remote Sensing of Environment 113(4):771-780. https://doi.org/10.1016/j.rse.2008.12.002
  75. Penner, M., K. Power, C. Muhairwe, R. Tellier and Y. Wang. 1997. Canada's forest biomass resources: deriving estimates from Canada's forest inventory. Canadian Forest Service, Pacific Forestry Centre Information Report BC-X-370, Victoria, BC. 33pp.
  76. Phua, M. and H. Saito. 2003. Estimation of biomass of a mountainous tropical forest using Landsat TM data. Canadian Journal of Remote Sensing 29:429-440. https://doi.org/10.5589/m03-005
  77. Pouch, G.W. and D.J. Campagna. 1990. Hyperspherical direction cosine transformation for separation of spectral and illumination information in digital scanner data. Photogrammetric Engineering and Remote Sensing 56:475-479.
  78. Rahman, M.M., E. Csaplovics and B. Koch. 2008. Satellite estimation of forest carbon using regression models. International Journal of Remote Sensing 29(23):6917-6936. https://doi.org/10.1080/01431160802144187
  79. Reese, H., M. Nilsson, P. Sandstrom and H. Olson. 2002. Application using estimates of forest parameters derived from satellite and forest inventory data. Computers and Electronics in Agriculture 37:37-55. https://doi.org/10.1016/S0168-1699(02)00118-7
  80. Ricketts, T.H., E.S. Bryant, R.W. Birnie and K.D. Kimball. 1992. Landsat TM mapping of alpine vegetation to monitor global climate change. Proceedings of the American Society for Photogrammetry and Remote Sensing/ACSM/RT 92 Convention. Washington, D.C., USA, pp.86-97.
  81. Roy, P.S. and S.A. Ravan. 1996. Biomass estimation using satellite remote sensing data - an investigation on possible approaches for natural forest. Journal of Bioscience 21(4):535-561. https://doi.org/10.1007/BF02703218
  82. Sales, M.H., C.M.S. Jr, P.C. Kyriakidisb, D.A. Robertsb and E. Vidal. 2007. Improving spatial distribution estimation of forest biomass with geostatistics: a case study for Rondnia, Brazil. Ecological Modelling 205:221-230. https://doi.org/10.1016/j.ecolmodel.2007.02.033
  83. Santos, J.R., C.C. Freitas, L.S. Araujo, L.V. Dutra, J.C. Mura, F.F. Gama, L.S. Soler and S.J.S.S. Anna. 2003. Airborne P-band SAR applied to the aboveground biomass studies in the Brazilian tropical rainforest. Remote Sensing of Environment 87:482-493. https://doi.org/10.1016/j.rse.2002.12.001
  84. Schroeder, P., S. Brown, J. Mo, R. Birdsey and C. Cieszewski. 1997. Biomass estimation for temperate broadleaf forests of the US using inventory data. Forest Science 43:424-434.
  85. Steininger, M.K. 2000. Satellite estimation of tropical secondary forest aboveground biomass data from Brazil and Bolivia. International Journal of Remote Sensing 21:1139-1157. https://doi.org/10.1080/014311600210119
  86. Thenkabail, P.S., N. Stucky, B.W. Griscom, M.S. Ashton, J. Diels, B.V.D. Meer and E. Enclona. 2004. Biomass estimations and carbon stock calculations in the oil palm plantations of African derived savannas using IKONOS data. International Journal of Remote Sensing 25(23):5447-5472. https://doi.org/10.1080/01431160412331291279
  87. Tiwari, A.K. and J.S. Singh. 1984. Mapping of forest biomass in India using aerial photographs and non-destructive field sampling. Applied Geography 4:151-165. https://doi.org/10.1016/0143-6228(84)90019-5
  88. Tomppo, E., H. Olsson, G. Stahl, M. Nilsson, O. Hagner and M. Katila. 2008. Combining national forest inventory field plots and remote sensing data for forest databases. Remote Sensing of Environment 112(5):1982-1999. https://doi.org/10.1016/j.rse.2007.03.032
  89. Tomppo, E., M. Nilsson, M. Rosengren, P. Aalto and P. Kennedy. 2002. Simultaneous use of Landsat-TM and IRS-1C WiFS data in estimating large area tree stem volume and aboveground biomass. Remote Sensing of Environment 82:156-171. https://doi.org/10.1016/S0034-4257(02)00031-7
  90. Tomppo, E. and M. Siitonen. 1991. The national forest inventory of Finland. Paper and Timber 73(2):90−97.
  91. Tucker, C. 1978. A comparison of satellite sensor bands for vegetation monitoring. Photogrammetric Engineering and Remote Sensing 44:1361-1380.
  92. Walsh, S.J., J.W. Cooper, I.E.V. Essen and K.R. Gallagher. 1990. Image enhancement of Landsat Thematic Mapper data and GIS data integration for evaluation of resource characteristics. Photogrammetric Engineering and Remote Sensing 56:1135-1141.
  93. Wang, G., Tonny Oyana, Maozhen Zhang, Samuel Adu-Prah, Siqi Zeng, Hui Lin, Jiyun Se. 2009. Mapping and spatial uncertainty analysis of forest vegetation carbon by combining national forest inventory data and satellite images. Forest Ecology and Management 258:1275-1283. https://doi.org/10.1016/j.foreco.2009.06.056
  94. Wulder, M.A., J.C. White, R.A. Fournier, J.E. Luther and S. Magnussen. 2008. Spatially explicit lanrge area biomass estimation: three approaches using forest inventory and remotely sensed imagery in a GIS. Sensors 8:529-560. https://doi.org/10.3390/s8010529
  95. Zheng, D., J. Rademacher, J. Chen, T. Crow, M. Bresee, J.L. Moine and S. Ryu. 2004. Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA. Remote Sensing of Environment 93(3):402-411. https://doi.org/10.1016/j.rse.2004.08.008
  96. Zhuang, Q., T. Zhang and J. Xiao. 2009. Quantification of net primary production of Chinese forest ecosystems with spatial statistical approaches. Mitig Adapt Strateg Glob Change 14:85-99. https://doi.org/10.1007/s11027-008-9152-7
  97. 녹색성장위원회 홈페이지. 온실가스 감축목표. http://www.greengrowth.go.kr/www/policy/onsil/onsil.cms.
  98. 지식경제부 블로그. http://blog.naver.com/mocienews?Redirect=Log&logNo=100093532902.

Cited by

  1. Detection of landuse/landcover changes using remotely-sensed data vol.27, pp.6, 2016, https://doi.org/10.1007/s11676-016-0270-x
  2. Change Analysis of Aboveground Forest Carbon Stocks According to the Land Cover Change Using Multi-Temporal Landsat TM Images and Machine Learning Algorithms vol.18, pp.4, 2015, https://doi.org/10.11108/kagis.2015.18.4.081
  3. Stand Volume Estimation of Pinus Koraiensis Using Landsat TM and Forest Inventory vol.17, pp.1, 2014, https://doi.org/10.11108/kagis.2014.17.1.080
  4. 산림지역의 항공기 탑재 하이퍼스펙트럴 영상에 대한 식생-Endmember와 식생지수의 상관 분석 vol.15, pp.3, 2011, https://doi.org/10.11108/kagis.2012.15.3.052
  5. 국가산림자원조사 자료와 임상도를 활용한 리기다소나무림의 탄소 저장량에 대한 공간분포도 작성: 무주군의 사례로 vol.106, pp.2, 2011, https://doi.org/10.14578/jkfs.2017.106.2.258
  6. 항공 LiDAR 자료를 이용한 산림재적추정 모델 개발 - 봉화군 춘양면 애당리 혼효림을 대상으로 - vol.20, pp.3, 2011, https://doi.org/10.11108/kagis.2017.20.3.181
  7. 폐탄광 산림복구지의 수종별 탄소 저장량 추정: 자작나무, 잣나무, 소나무류 식재지를 중심으로 vol.38, pp.4, 2011, https://doi.org/10.11626/kjeb.2020.38.4.733