• Title/Summary/Keyword: 공간적 암호화

Search Result 97, Processing Time 0.028 seconds

Color Image Encryption using MLCA and Bit-oriented operation (MLCA와 비트 단위 연산을 이용한 컬러 영상의 암호화)

  • Yun, Jae-Sik;Nam, Tae-Hee;Cho, Sung-Jin;Kim, Seok-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.141-143
    • /
    • 2010
  • This paper presents a problem of the existing encryption method using MLCA or complemented MLCA and propose a method to resolve this problem. With the existing encryption methods, the result of encryption is affected by the original image because of spatial redundancy of adjacent pixels. In this proposed method, we transform spatial coordinates of all pixels into encrypted coordinates. We also encrypt color values of the original image by operating XOR with pseudo-random numbers. This can solve the problem of existing methods and improve the levels of encryption by randomly encrypting pixel coordinates and pixel values of original image. The effectiveness of the proposed method is proved by conducting histogram, key space analysis.

  • PDF

Reversible Data Hiding Technique using Encryption Technique and Spatial Encryption Technique (암호화 기법 및 공간적인 암호화 기법을 사용한 가역 데이터 은닉기법)

  • Jung, Soo-Mok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.632-639
    • /
    • 2021
  • In this paper, we proposed a reversible data hiding technique that greatly enhances the security of confidential data by encrypting confidential data and then spatially encrypting the encrypted confidential data and hiding it in the cover image. When a result image is generated by hiding the encrypted confidential data in the cover image using a spatial encryption technique, the quality of the result image is very good, and the original cover image and the result image cannot be visually distinguished. Since the encrypted confidential data is spatially encrypted and concealed, it is not possible to know where the encrypted confidential data is concealed in the result image, and the encrypted confidential data cannot be extracted from the result image. Even if the encrypted confidential data is extracted, the original confidential data is not known because the confidential data is encrypted. Therefore, if confidential data is concealed in images using the proposed technique, the security of confidential data is greatly improved. The proposed technique can be effectively used in medical and military applications.

Image Watermarking Algorithm using Spatial Encryption (공간적 암호화를 사용하는 영상 워터마킹 기법)

  • Jung, Soo-Mok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.1
    • /
    • pp.485-488
    • /
    • 2020
  • In this paper, a technique for securely concealing the watermark, which is intellectual property information, in the image pixel LSB using spatial encryption is proposed. The proposed watermarking technique can be effectively used to protect intellectual property of images. The proposed technique can be used to extract watermark without loss from the stego-image, which is a hidden image of spatially encrypted watermark. The experimental results confirmed the superiority of the proposed technique. As a result of performing watermarking using the proposed technique, the image quality of the stego-image is higher than 51 dB, so humans cannot visually recognize the presence of a watermark. Due to the watermark is spatially encrypted, the security of the watermark is excellent.

Optical CBC Block Encryption Method using Free Space Parallel Processing of XOR Operations (XOR 연산의 자유 공간 병렬 처리를 이용한 광학적 CBC 블록 암호화 기법)

  • Gil, Sang Keun
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.5
    • /
    • pp.262-270
    • /
    • 2013
  • In this paper, we propose a modified optical CBC(Cipher Block Chaining) encryption method using optical XOR logic operations. The proposed method is optically implemented by using dual encoding and a free-space interconnected optical logic gate technique in order to process XOR operations in parallel. Also, we suggest a CBC encryption/decryption optical module which can be fabricated with simple optical architecture. The proposed method makes it possible to encrypt and decrypt vast two-dimensional data very quickly due to the fast optical parallel processing property, and provides more security strength than the conventional electronic CBC algorithm because of the longer security key with the two-dimensional array. Computer simulations show that the proposed method is very effective in CBC encryption processing and can be applied to even ECB(Electronic Code Book) mode and CFB(Cipher Feedback Block) mode.

Method for Conditional Access Control in Secured SVC Bitstream (암호화된 SVC 비트스트림에서 조건적 접근 제어 방법에 관한 연구)

  • Won, Yong-Geun;Bae, Tae-Meon;Ro, Yong-Man
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.11a
    • /
    • pp.151-154
    • /
    • 2005
  • 본 논문에서는 스케일러블 멀티미디어 콘텐츠에 대한 조건적 접근제어가 가능한 암호화 방법을 제안한다. 현재 표준화가 진행중인 스케일러블 비디오 코딩방법인 JSVM(Joint Scalable Video Model)은 부호화한 동영상에 대해 공간, 시간, 품질의 스케일러빌리티(Scalability)를 지원하는데, 각 스케일러 빌리티를 고려한 조건적인 접근제어기술은 스케일러빌리티에 따라 사용자를 제한해야 하는 경우를 위해 필수적인 기술이다. 제안하는 방법은 공간, 시간, 품질의 세가지 스케일러빌리티를 지원하도록 부호화(Encoding)후 구성되는 NAL(Network Abstract Layer)을 지원하는 스케일러빌리티에 따라 구분하고, 구분된 NAL 의 종류에 따라 암호화 key 를 다르게 제공하는 방법을 통해 사용자의 접근제어 수준에 맞게 암호화 key 를 조합하는 방법을 적용하였다. 실험 결과 제안한 방법은 JSVM 에서 공간, 시간, 품질의 스케일러빌리티가 보장되고, 이때 생성되는 Key 의 조합으로 조건적 접근제어(Conditional access control)가 가능함을 확인하였다.

  • PDF

An Advanced Color Watermarking Technique using Various Spatial Encryption Techniques (다양한 공간적 암호화 기법을 적용한 개선된 컬러 영상 워터마킹 기법)

  • Jung, Soo-Mok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.3
    • /
    • pp.262-266
    • /
    • 2020
  • In this paper, we proposed an effective technique for hiding the watermark in the LSB of a color image by applying spatial encryption techniques. Even if the watermark hidden in the LSB of the image is extracted, the information of the extracted watermark cannot be decrypted because the watermark is encrypted using various spatial encryption techniques. Therefore, if the watermark is concealed in the LSB using the spatial encryption techniques proposed in this paper, the security is greatly improved compared to the existing technique of embedding the watermark in the LSB. When watermarking is performed by applying the proposed technique, the image quality of the watermark-concealed image is very good, so it is impossible to distinguish it from the original image, and the watermark, which is confidential data, can be extracted from the watermarked image without loss. The performance of the proposed technique was mathematically analyzed and the superiority of the proposed technique was confirmed through experiments. When the watermark was concealed by applying the proposed technique to Lenna, airplane, Tiffany, and pepper images having a size of 512×512, the PSNR values of the watermarked images were 53.91dB, 54.10dB, 54.09dB, and 54.13dB, respectively.

Digital Image Encryption using Spatial Frequency Property Rearrangement (공간주파수 성분 재배치 방법을 이용한 디지털 이미지 암호화)

  • 김기종;유기영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.571-573
    • /
    • 1998
  • 정보전달에 있어서 멀티미디어 정보가 차지하는 비중이 점점 증대됨에 따라 멀티미디어 데이터 암호화의 필요성이 부각되고 있는 실정이다. 그러나 기존의 암호화에 일반적으로 적용되어온 DES(Data Encription Standard)와 같은 전통적인 암호화 알고리즘은 멀티미디어 데이터를 암호화하여 실시간으로 처리하기에는 충분히 신속하지 못한 단점이 있다. 그래서 본 논문에서는 디지털 이미지 프로세싱 기법중 압축기법과암호화 기법을 일련의 과정으로 통합하여 멀티미디어 정보의 중요부분을 차지하는 디지털 이미지의 실시간 암호화 처리기법을 연구하였다. 디지털 이미지의 저주파수 성분과 고주파수 성분을 다단계의 레벨로 분리하여 각 대역별로 성분을 집중시킨 후 임의의 배치 순서로 재배치하는 방법을 통해 DCT(Discrete Cosine Transform)과정 및 양자화과정을 거친 공간주파수 성분을 Zig-Zag순서가 아닌 임의의 배치 순서로 재배열할 때 발생되는 이미지의 크기가 상대적으로 커지는 점과 저주파수 성분이 주요 성분으로 구성된 이미지의 경우 해독이 비교적 용이하다는 점, 또한 약간의 응용으로 각 블록의 DC값만을 추출하여 이미지의 주요 내용을 파악할 수 있는 문제점을 해결하였다.

  • PDF

3D Point Clouds Encryption Method and Analysis of Encryption Ratio in Holographic Reconstruction Image (3D 공간정보 암호화 기법과 홀로그래픽 복원영상의 암호화 효율 분석)

  • Choi, Hyun-Jun;Seo, Young-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1703-1710
    • /
    • 2017
  • This paper propose a 3D point clouds (depth) security technique for digital holographic display service. Image contents encryption is a method to provide only authorized right owners with the original image information by encrypting the entire image or a part of the image. The proposed method detected an edge from a depth and performed quad tree decomposition, and then performed encryption. And encrypts the most significant block among the divided blocks. The encryption effect was evaluated numerically and visually. The experimental results showed that encrypting only 0.43% of the entire data was enough to hide the constants of the original depth. By analyzing the encryption amount and the visual characteristics, we verified a relationship between the threshold for detecting an edge-map. As the threshold for detecting an edge increased, the encryption ratio decreased with respect to the encryption amount.

Geometry Transformation in Spatial Domain Using Coefficient Changes in Frequency Domain toward Lightweight Image Encryption (주파수 영역에서의 계수 값 변환에 의한 공간 영역에서의 기하학적 변환과 이를 이용한 이미지 경량 암호화)

  • Joo, Jeong Hyun;Yi, Kang
    • Journal of KIISE
    • /
    • v.42 no.2
    • /
    • pp.162-168
    • /
    • 2015
  • Image data is mostly stored in compressed form because of its huge size. Therefore, a series of cumbersome procedures is required to apply a transformation to image data: decompression, extraction of spatial data, transformation and recompression. In this paper, we employ DCT(Discrete Cosine Transform) coefficients to change the spatial presentation of images. DCT is commonly used in still image compression standards such as JPEG and moving picture compression standards such as MPEG-2, MPEG-4, and H.264. In this paper, we derived mathematically the relationship between the geometry transformation in the spatial domain and coefficient changes in the DCT domain and verified it with images in the JPEG file format. Because of the efficiency of transformation in the frequency domain, our findings can be utilized for light-weight partial image encryption for privacy data protection or entertainment contents protection.

A kernel memory collecting method for efficent disk encryption key search (디스크 암호화 키의 효율적인 탐색을 위한 커널 메모리 수집 방법)

  • Kang, Youngbok;Hwang, Hyunuk;Kim, Kibom;Lee, Kyoungho;Kim, Minsu;Noh, Bongnam
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.5
    • /
    • pp.931-938
    • /
    • 2013
  • It is hard to extract original data from encrypted data before getting the password in encrypted data with disk encryption software. This encryption key of disk encryption software can be extract by using physical memory analysis. Searching encryption key time in the physical memory increases with the size of memory because it is intended for whole memory. But physical memory data includes a lot of data that is unrelated to encryption keys like system kernel objects and file data. Therefore, it needs the method that extracts valid data for searching keys by analysis. We provide a method that collect only saved memory parts of disk encrypting keys in physical memory by analyzing Windows kernel virtual address space. We demonstrate superiority because the suggested method experimentally reduces more of the encryption key searching space than the existing method.