• Title/Summary/Keyword: 골재대체율

Search Result 119, Processing Time 0.028 seconds

Long-Term Performance Evaluation of Concrete Utilizing Oyster Shell in Lieu of Fine Aggregate (굴패각을 잔골재로 대체 사용한 콘크리트의 장기성능 평가)

  • Yang, Eun-Ik;Yi, Seong-Tae;Kim, Hak-Mo;Shim, Jae-Seol
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.280-287
    • /
    • 2003
  • To evaluate the practical application of oyster shells(OS) as construction materials, an experimental study was performed. More specifically, the long-term mechanical properties and durability of concrete blended with oyster shells were investigated. Test results indicate that long-term strength of concrete blended with 10% oyster shells is almost identical to that of normal concrete. However, the long-term strength of concrete blended with 20% oyster shells is appreciably lower than that of normal concrete. Thereby, concrete with higher oyster shell blend has the possibility of negatively influencing the concrete long-term strength. Elastic modulus of concrete blended with crushed oyster shells decreases as the blending mixture rate increases. Namely, the modulus is reduced to approximately 10∼15% when oyster shells are blended up to 20% as the fine aggregate. The drying shrinkage strain increases with an increasing crushed oyster shells substitution rate. In addition, the existing model code of drying shrinkage and creep do not coincide with the test results of this study. An adequate prediction equation needs to be developed. The utilization of oyster shells as the fine aggregate in concrete has an insignificant effect on fleering and thawing resistance, carbonation and chemical attack of concrete. However, water permeability is considerably improved.

Application of Oyster Shells as Aggregates for Concrete (콘크리트용 골재로서 굴패각의 활용)

  • 어석홍;황규한;김정규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.540-548
    • /
    • 2002
  • The purpose of this study is to analyze the application of oyster shells (OS) as aggregates for concrete. For this purpose, five reference mixes with W/C ratios of 0.4 ∼0.6 at intervals of 0.05 were used. The replacement proportion of OS was varied with ratios of 0, 10, 30, 50 and 100% by volume of fine or coarse aggregate in the reference mixes. OS was washed and crushed for using as aggregates. New chemical reaction between crushed OS aggregate and cement paste was tested through XRD and SEM analysis. Two strength properties (compressive and flexural) were considered. Strength tests were carried out at the ages of 1, 3, 7, 14 and 28 days. The variations of workability, air content and density, drying shrinkage of the specimens with different proportions of OS were also studied. Finally, the hollow concrete block using OS as a substitute material for fine aggregate was made for testing the application of OS. Experimental results showed that my new chemical reaction did not occur due to mixing OS in concrete. The workability and strengths decreased with increase in proportion of OS. The same trend was observed in density and unit weight, but air content increased due to the inherent pores in OS, which showed a possibility to produce light weight concrete with low strength by using OS as coarse aggregates for concrete. Tests on hollow concrete block showed that the compressive strength and absorption ratio were satisfied with quality requirements when the fine aggregate was substituted with OS up to 50% in volume.

Physical Properties of Shale Aggregate and Characteristics of Concrete in Replacement Ratio in Daegu-Kyeongbuk Region (대경권 셰일 골재의 물성 평가 및 치환율 변화에 따른 콘크리트의 특성)

  • Lee, Seung-Han;Jung, Yong-Wook;Yeo, In-Dong;Choi, Jong-Oh;Bae, Su-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5551-5557
    • /
    • 2012
  • Sedimentary rocks dug up in construction fields are mostly stockpiled for landfill disposal, leading to an increase in construction costs and construction inefficiency. After screening, some of the sandstone can be used as aggregate; however, most of the shale ends up as industrial waste in practice. In this study, to stabilize the demand and develop resources for alternative aggregates of concrete, the potential use of shale, which is widely distributed in the Daegu-Kyeongbuk region, as a concrete aggregate was evaluated. Red and black shale exported from a Daegu excavation site was selected for use in the experiments and evaluated by comparing with hornfels, which is widely used as a coarse aggregate and is a type of andesite and metamorphosed sedimentary rock. The physical properties of the aggregate were evaluated in accordance with the test methods of KS F 2527 "crushed concrete aggregate," and the compressive strength against the shale aggregate replacement ratio was measured. The compressive strength of the concrete after 28 days was 30.8 MPa when the black shale replaced 100% of the aggregate in the concrete and 31.1 MPa when the red shale replaced 100% of the aggregate in the concrete. Compared with the compressive strength of 37.5 MPa for concrete prepared by using plain aggregate, using shale as a substitute for the aggregate produced an average compressive strength that was 82% of normal concrete.

Characteristics of Recycled Aggregate Powder Containing Mortar Depending on Grinding Efficiency (분쇄 효율에 따른 순환골재 분말 혼입 모르타르의 특성)

  • Bang, Jinwook;Jang, Youngil;Lee, Jongwon;Mun, Seokho;Chu, Hyunseung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.116-121
    • /
    • 2019
  • In order to evaluating applicability of RAP (recycled aggregate powder) in mortar, in this study, physical and mechanical tests was carried out. Material characteristics of recycled aggregate and RAP were evaluated and the mechanical properties of mortar replaced with RAP were analyzed. Test result of sieve analysis showed that as the milling time increased the fineness modulus was decreased and the distribution of 0.6 mm particle size was found to increase. The fluidity of mortar mixture substituted with RAP tended to increase than Plain mixture. It was result that the increasing fluidity was affected by unreacted surplus water in the mortar as the binder was replaced with RAP. From the compressive strength result of the mortar subjected to RAP, it was found that the RAP was able to replace up to about 10% of unit binder weight although the compressive strength of mortar was decreased as the RAP replacement increased. From the above study, it can be concluded that the physical properties of RAP satisfied the quality standard of aggregate for replacement with fine aggregate. Moreover, in case of the RAP was replaced up to 10% of unit cement weight, it was able to be possible to improve fluidity and compressive strength of mortar.

Segmentation of Natural Fine Aggregates in Micro-CT Microstructures of Recycled Aggregates Using Unet-VGG16 (Unet-VGG16 모델을 활용한 순환골재 마이크로-CT 미세구조의 천연골재 분할)

  • Sung-Wook Hong;Deokgi Mun;Se-Yun Kim;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.143-149
    • /
    • 2024
  • Segmentation of material phases through image analysis is essential for analyzing the microstructure of materials. Micro-CT images exhibit variations in grayscale values depending on the phases constituting the material. Phase segmentation is generally achieved by comparing the grayscale values in the images. In the case of waste concrete used as a recycled aggregate, it is challenging to distinguish between hydrated cement paste and natural aggregates, as these components exhibit similar grayscale values in micro-CT images. In this study, we propose a method for automatically separating the aggregates in concrete, in micro-CT images. Utilizing the Unet-VGG16 deep-learning network, we introduce a technique for segmenting the 2D aggregate images and stacking them to obtain 3D aggregate images. Image filtering is employed to separate aggregate particles from the selected 3D aggregate images. The performance of aggregate segmentation is validated through accuracy, precision, recall, and F1-score assessments.

A Study for Recycling CO2 Silicate Bonded Waste Foundry Sand as Fine Aggregate for Concrete (CO2형 폐주물사를 콘크리트용 잔골재로 재활용하기 위한 연구)

  • 문한영;최연왕;송용규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.420-429
    • /
    • 2002
  • The amount of $CO_2$-silicate bonded waste foundry sand(WFS) occurred in Korea is over 800,000 ton per year. WFS, as a by-product, is generated through manufacturing process of foundry may affect our environmental contamination, The reason is that WFS has been buried itself not less than 90% out of total WFS. So, it can give damage on the ground of contamination in soil and underwater. Therefore, it is necessary to establish the method recycling WFS because of being intensified waste management law. In this study, we performed the research with respect to harmful component analysis, the qualities of WFS mortar and concrete mixed with WFS. As the results the specific gravity of WFS is the same as that of natural aggregate while unit weight and percentage of solids of WFS are smaller than those of it. But it is found that WFS can be used by substituting WFS for natural aggregate after control of poor grade of WFS. The flowability of mortar and concrete with WFS is inferior to those of natural aggregate, and the setting time of concrete with WFS is faster than that with only natural aggregate, On the contrary, the bleeding of concrete with WFS is shown good result, and compressive and tensile strength of concrete substituted WFS for 30% are higher than those with only natural aggregate regardless of elapsed time.

Effects of Aggregate Grading on the Performance of High-Flowing Concrete with General Strength (일반 강도용 고유동 콘크리트에서의 골재 입도 영향)

  • Kim, Sang Chel;Kim, Yun Tae;Shin, Dong Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.63-72
    • /
    • 2012
  • The high-flowing concrete requires additionally or excessively more expensive admixture than conventional concrete. So, the concrete has not to be widely used in practical field due to the increase of production price, need of additional facilities, and excessive development of concrete strength in associate with addition of too much cementitious material even though it has more significant advantages than conventional concrete. Thus, this study aims at developing high-flowing concrete with general strength unlike high strength which has been carried out in conventional study. To observe the role of aggregate in the concrete quantitatively and to increase the performance of high-flowing concrete effectively, parametric studies were carried out such as W/C, s/a, fineness modulus of aggregate, contribution degree of particle sizes, and the effect of 13mm aggregate and fine stone powder as a partial replacement of aggregates. And the effect of these factors on performance of the concrete was evaluated by measuring slump-flow and gap of penetration height in U-typed instrument. As a result, it was found that flowability of high-flowing concrete depends upon grading of fine aggregate more significantly than that of coarse aggregate and is enhanced greatly as fineness modulus of fine aggregate decreases and the value of s/a increases. In addition, the application of 13mm aggregate and fine stone powder are expected as a partial replacement of aggregate in order to increase the performance of high-flowing concrete more effectively.

Improvement of Dry-blasting Efficiency for Ballast used as Aggregate of Paved Track (포장궤도 골재용 도상자갈의 건식 블라스팅 효율 향상 연구)

  • Lee, Il-Wha
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.1
    • /
    • pp.78-83
    • /
    • 2010
  • On the paved track, the ballast is used as aggregate for the filling layer using the pre-packed concrete technique. The most important condition of aggregate is adhesive strength with mortar. To satisfy this condition, surface of aggregate should be cleaned by water or others. In a paved-track method to be introduced domestically, an environment-friendly dry-washing technology which will replace the water-washing method has been developed. A dry-washing method was designed to blast the crushed weight material with a diameter of 0.3~0.5mm at high pressure to peel the surface of the aggregate. The study was intended to enhance the washing efficiency of dry-blasting technology and to that end, the tests including blasting material, content of fine aggregate depending on time elapsed, content of chloride, LA abrasion rate and compressive strength were conducted to recommend the efficient washing material and the process.

Characteristics of Concrete Polymer Composite Using Atomizing Reduction Steel Slag as an Aggregate (II) (Use of Polystyrene as a Shrinkage Reducing Agent) (아토마이징 제강 환원슬래그를 골재로 사용한 폴리머 콘크리트 복합재료의 특성(II) (폴리스티렌 수축저감재 사용))

  • Hwang, Eui-Hwan;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.380-385
    • /
    • 2014
  • Spherical atomizing reduction steel slag was prepared by atomizing technology using reduction steel slag (ladle furnace slag, LFS) generated from steel industry. In order to develop the mass-recycling technology of atomizing reduction steel slag, polymer concrete composite was prepared using spherical atomizing reduction steel slag instead of fine aggregate (river sand) and coarse aggregate (crushed aggregate), depending on the grain size. Different polymer concrete specimens were prepared with the various proportions of polymer binder and replacement ratios of atomizing reduction steel slag in order to investigate the characteristics of polymer concrete composite. Results showed that compressive strengths of polymer concrete specimens decreased with the increase of replacement ratios of atomizing reduction steel slag, but flexural strengths of the specimens showed a maximum strength at the 50% of replacement ratios of atomizing reduction steel slag. It was concluded that addition ratio of polymer binder, which affect greatly on the prime cost of production of polymer concrete, could be reduced by maximum 18.2 vol% because the workability of the polymer concrete was remarkably improved by using the atomizing reduction steel slag. However, further study is required because the mechanical strength of the specimen using atomizing reduction steel slag was greatly reduced in hot water resistance test.

Quality Improvement of Recycled Fine Aggregate by Neutralization Reaction in Water (습식 중화반응에 의한 순환 잔골재의 품질 향상)

  • Kim, Ha-Suk;Kim, Jin-Man;Sun, Joung-Soo;Bae, Kee-Sun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.146-151
    • /
    • 2015
  • Recycled aggregate by the recycling construction waste has a lot of advantage such as the developing the alternative resource and protecting of environment. However, recycled aggregate is used as the low quality grade, because it is difficult to remove old mortar from aggregate. To use the recycled aggregate as high quality grade, it is important to develop the technology to produce the high quality recycled aggregate. To manufacture the high quality recycled aggregate, old mortar attached on the aggregates should be removed efficiently. Therefore, in this study, we suggested the optimum condition to remove old mortar effectively using sulfuric acid and low speed wet rotary mill for high quality recycled fine aggregate. The results shows that the recycled aggregate satisfy on the standards of KS F 2573 in density, absorption and solid volume, when adequate condition of sulfuric mole ratio and aggregate ratio are make.