DOI QR코드

DOI QR Code

Characteristics of Concrete Polymer Composite Using Atomizing Reduction Steel Slag as an Aggregate (II) (Use of Polystyrene as a Shrinkage Reducing Agent)

아토마이징 제강 환원슬래그를 골재로 사용한 폴리머 콘크리트 복합재료의 특성(II) (폴리스티렌 수축저감재 사용)

  • Hwang, Eui-Hwan (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Jin-Man (Department of Architecture, Kongju National University)
  • Received : 2014.04.22
  • Accepted : 2014.06.03
  • Published : 2014.08.10

Abstract

Spherical atomizing reduction steel slag was prepared by atomizing technology using reduction steel slag (ladle furnace slag, LFS) generated from steel industry. In order to develop the mass-recycling technology of atomizing reduction steel slag, polymer concrete composite was prepared using spherical atomizing reduction steel slag instead of fine aggregate (river sand) and coarse aggregate (crushed aggregate), depending on the grain size. Different polymer concrete specimens were prepared with the various proportions of polymer binder and replacement ratios of atomizing reduction steel slag in order to investigate the characteristics of polymer concrete composite. Results showed that compressive strengths of polymer concrete specimens decreased with the increase of replacement ratios of atomizing reduction steel slag, but flexural strengths of the specimens showed a maximum strength at the 50% of replacement ratios of atomizing reduction steel slag. It was concluded that addition ratio of polymer binder, which affect greatly on the prime cost of production of polymer concrete, could be reduced by maximum 18.2 vol% because the workability of the polymer concrete was remarkably improved by using the atomizing reduction steel slag. However, further study is required because the mechanical strength of the specimen using atomizing reduction steel slag was greatly reduced in hot water resistance test.

철강산업에서 발생되는 제강 환원슬래그(Ladle furnace slag, LFS)를 사용하여 아토마이징 공법을 통하여 구형의 아토마이징 제강 환원슬래그를 제조하였다. 아토마이징 제강 환원슬래그의 대량 재활용 기술을 개발하기 위하여 구형의 아토마이징 제강 환원슬래그를 입도에 따라 잔골재(강모래)와 굵은 골재(쇄석)를 대체 사용하여 폴리머 콘크리트 복합재료를 제조하였다. 폴리머 콘크리트 복합재료의 특성을 조사하기 위하여 폴리머 결합재의 첨가율과 아토마이징 제강 환원슬래그의 대체율에 따라 다양한 배합의 폴리머 콘크리트 공시체를 제조하였다. 시험결과, 아토마이징 제강 환원슬래그의 대체율 증가에 따라 공시체의 압축강도는 감소되었으나 휨강도는 50%의 대체율에서 최대 강도를 나타내었다. 아토마이징 제강 환원슬래그를 사용함으로서 작업성이 향상되어 폴리머 콘크리트 복합재료의 생산원가에 가장 큰 영향을 미치는 폴리머 결합재의 사용량을 최대 18.2 vol% 절감할 수 있었다. 그러나 내열수성시험에서 아토마이징 제강 환원슬래그를 사용한 공시체의 기계적 강도가 현저히 감소되기 때문에 더 많은 연구가 요구된다.

Keywords

References

  1. D. G. Montgomery and G. Wang, Instant-chilled steel slag aggregate in concrete(strength related properties), Cem. Conc. Res., 21, 1083-1091 (1991). https://doi.org/10.1016/0008-8846(91)90068-S
  2. D. G. Montgomery and G. Wang, Instant-chilled steel slag aggregate in concrete(fracture related properties), Cem. Conc. Res., 22, 755-760 (1992). https://doi.org/10.1016/0008-8846(92)90098-G
  3. E. H. Hwang, C. H. Lee, and J. M. Kim, Physical properties of polymer concrete composite using rapid-cooled steel slag(I), Appl. Chem. Eng., 23, 210-216 (2012).
  4. E. H. Hwang, C. H. Lee, and J. M. Kim, Physical properties of polymer concrete composite using rapid-cooled steel slag(II), Appl. Chem. Eng., 23, 409-415 (2012).
  5. J. M. Kim, S. H. Cho, S. Y. Oh, and E. G. Kwak, The properties of underwater-harding epoxy mortar used the rapidly cooled steel slag, J. of the Korea Conc., Instit., 19, 39-45 (2007). https://doi.org/10.4334/JKCI.2007.19.1.039
  6. O. S. Oh et al., Patent No. 10-0098062-0000 (1996).
  7. E. H. Hwang, J. M. Kim, and J. H. Yeon, Characteristics of polyester polymer concrete using spherical aggregates from industrial by-products, J. Appl. Polym. Sci., 2905-2912 (2013).
  8. M. Haidar, E. Ghorbel, and H. Toutanji, Optimization of the formulation of micro-polymer concretes, Const. Build. Mater., 25, 1632-1644 (2011). https://doi.org/10.1016/j.conbuildmat.2010.10.010
  9. J. P. Gorninski, D. C. Dal Molin, and C. S. Kazmierczak, Strength degradation of polymer concrete in acidic environments, Cem. Conc. Compos., 29, 637-645 (2007). https://doi.org/10.1016/j.cemconcomp.2007.04.001
  10. D. W. Fowler, Polymers in concrete: a vision for the 21st century, Cem. Conc. Com., 21, 449-452 (1999). https://doi.org/10.1016/S0958-9465(99)00032-3
  11. L. Czarnecki, A. Garbacz, and J. Kurach, On the characterization of polymer concrete fracture surface, Cem. Conc. Compos., 23, 399-409 (2001). https://doi.org/10.1016/S0958-9465(01)00009-9
  12. Y. Ohama, Recent research and development trends of concrete-polymer composites in Japan, Proc. 12th Inter. Cong. on polym. in Conc., September 27-28, Chuncheon, Korea (2007).
  13. Dionys Van Gemert, Lech Czarnecki et al., Cement concrete and concrete-polymer composites: Two merging worlds, Cem. Conc. Compos., 27, 926-933 (2005). https://doi.org/10.1016/j.cemconcomp.2005.05.004
  14. Jose T. San-Jose, Ingo J. Vegas, and Moises Frias, Mechanical expectations of a high performance concrete based on a polymer binder and reinforced with non-metallic rebars, Const. Build. Mater., 22, 2031-2041 (2008). https://doi.org/10.1016/j.conbuildmat.2007.08.001
  15. J. P. Gorninski, D. C. Dal Molin, and C. S. Kazmierczak, Study of the modulus of elasticity of polymer concrete compounds and comparative assessment of polymer concrete and portland cement concrete, Cem. Conc. Res., 34, 2091-2095 (2004). https://doi.org/10.1016/j.cemconres.2004.03.012
  16. Hisham Abdel-Fattah and Moetaz M. El-Hawary, Flexural behavior of polymer concrete, construction and building materials, Const. Build. Mater., 13, 253-262 (1999). https://doi.org/10.1016/S0950-0618(99)00030-6
  17. J. P. Gorninski, D. C. Dal Molin, and C. S. Kazmierczak, Comparative assessment of isophtalic and orthophtalic polyester polymer concrete: Different costs, similar mechanical properties and durability, Const. Build. Mater., 21, 546-555 (2007). https://doi.org/10.1016/j.conbuildmat.2005.09.003
  18. E. H. Hwang and J. M. Kim, Characteristics of Concrete Polymer Composite Using Atomizing Reduction Steel Slag (I), (Use of PMMA As a Shrinkage Reducing Agent), Appl. Chem. Eng., 25, 181-187 (2014). https://doi.org/10.14478/ace.2014.1003
  19. B. W. Jo, S. K. Park, and D. K. Kim, Mechanical properties of nano-MMT reinforced polymer composite and polymer concrete, Const. Build. Mater., 22, 14-20 (2008). https://doi.org/10.1016/j.conbuildmat.2007.02.009

Cited by

  1. Characteristics of Polyester Polymer Concretes Using Spherical Aggregates from Industrial By-Products (III) (Using an Atomizing Steel Slag as a Filler and Fine Aggregate) vol.26, pp.1, 2015, https://doi.org/10.14478/ace.2014.1131
  2. Characteristics of Polyester Polymer Concrete Using Spherical Aggregates from Industrial By-Products(II)(Use of Fly Ash and Atomizing Reduction Steel Slag) vol.53, pp.3, 2015, https://doi.org/10.9713/kcer.2015.53.3.364
  3. 고성능 폴리머 콘크리트 복합재료의 내구성(내약품성 및 내열성을 중심으로) vol.28, pp.3, 2017, https://doi.org/10.14478/ace.2017.1040
  4. 불포화폴리에스테르 수지의 형태에 따른 폴리머 모르타르 복합재료의 내열수성 vol.29, pp.2, 2014, https://doi.org/10.14478/ace.2017.1123