• 제목/요약/키워드: 고 점성유체

검색결과 26건 처리시간 0.03초

비압축성 점성유체의 유한요소 해석

  • 유원진
    • 전산구조공학
    • /
    • 제11권1호
    • /
    • pp.90-95
    • /
    • 1998
  • 본 고에서는 비압축성 점성유체의 유한요소해석 기법을 소개하였다. 대류항의 상류화 기법으로 안정된 해를 도출할 수 있으며 Penalty 방법에 기반하여 압력항을 지배방정식으로부터 소거함으로써 해석시간과 요구저장공간을 감소시켰다. 실린더 주변의 유동장을 해석하여 와의 방출을 성공적으로 묘사하였으며 항력계수를 17%정도의 오차로 계산하였다. 적응적 요소세분화 기법에 대한 연구를 통해 적절한 오차평가 기법 및 최적의 체눈을 형성하는 기법을 제시하였다. 또한 동적 해석에 적합한 요소재결합 알고리즘에 대한 연구가 진행중이다. 본 고의 결과는 직접적으로 풍공학분야에 사용하기에는 아직 계산 시간의 효율성이나 해의 정확도 및 안정성면에서 무리가 있으나 추가적인 연구를 통하여 해석기법의 개선을 도모하고 컴퓨터 등 계산장비의 급속한 발전으로 장래에 경쟁력을 획득할 수 있을 것으로 기대된다.

  • PDF

캐비티 내 고 점성유체의 비정상 흔합대류에 관한 수치해석적 연구 (Numerical Study of Unsteady Mixed Convection in a Cavity with High Viscous Fluid)

  • 배대석
    • 동력기계공학회지
    • /
    • 제13권5호
    • /
    • pp.11-17
    • /
    • 2009
  • A numerical study of unsteady mixed convection in a cavity with high viscous fluid is presented. Finite volume method was employed for the discretization and PISO algorithm was used for calculating pressure term. The parameters governing the problem are the Rayleigh number ($10^3\;{\leq}\;Ra\;{\leq}\;10^5$), the Reynolds number (0 < Re $\leq$ 1), and the aspect ratio (0.5 $\leq$ AR $\leq$ 2). The fluid used is silicon oil, a high prandtl number fluid, Pr = 909.1. The results show velocity vectors and temperature distributions. It is found that the periodic flows in a cavity are observed at very low Reynolds numbers, and the period of periodic flow decreases with increasing Reynolds and Rayleigh numbers, and increases with increasing aspect ratio. Also, the Reynolds number range of periodic flow increases with increasing Rayleigh numbers and aspect ratio.

  • PDF

사출성형에서의 비등온, 3차원 유동해서과 그 응용 (Flow analysis of non-isothermal three dimensional filling phase in injection molding and its application)

  • 김대업;정근섭;이귀영
    • 오토저널
    • /
    • 제15권1호
    • /
    • pp.17-24
    • /
    • 1993
  • 사출성형 문제는 열전달과 유체유동이 복합된 문제라고 할수 있다. 사출성형 공정은 충진(filling), 보압(packing) 및 냉각과정(cooling phase)으로 이루어 진다. 충진과정은 높은 점성의 Non-Newtonian유체가 몰드내의 캐버티로 사출됨으로써 이루어지며 플라스틱의 점성도는 플라스틱의 온도 및 유동속도와 관련이 크며 이 flow-rate는 점도와 더불어 변화한다. CAE 유동해석 프로그램은 유체의 흐름과 열전달을 이용하여 충진과정을 이해하는데 이용되고 있다. 본 고에서는 사출성형 과정 중 충진과정에 대한 컴퓨터 시뮬레이션과 그 적용사례에 대하여 살펴본다.

  • PDF

고 분산성 자성 나노유체의 열전도도 및 점성

  • 서용재;이효숙;조국;길대섭;정경우;주명은
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.4.2-4.2
    • /
    • 2010
  • 최근 열전달율을 획기적으로 향상시킬 수 있는 고 열전도성 나노유체가 주목을 받고 있다. 고 열전도성 나노유체는 액상보다 열전도도가 수백~수만 배 높은 고상의 금속 또는 비금속 나노입자를 물이나 오일 등에 미량 균일하게 분산시킴으로써 기존의 유체가 가지지 못한 높은 열전도율과 분산안정성을 갖는 기능성유체를 말한다. 고 열전도성 나노유체는 기존 냉각시스템에서 냉각유체만 교체할 경우에도 열전달 효율을 20% 이상 향상시킬 수 있는 저비용 고효율작동 유체이다. 이 나노유체는 발전설비, 공조설비, 에너지 산업, 석유화학, 화학공업, 제철산업, 가정용 냉난방설비, 자동차 등 산업 전 분야의 열교환시스템에 활용이 가능하다. 따라서 고 열전도성 나노유체는 종래 열효율의 한계를 돌파할 수 있는 에너지 이용 효율 향상 기술의 패러다임을 바꿀 혁신적인 신소재로 여겨지고 있다. 그러나 현재까지 개발된 나노유체는 초기 열전도 특성은 우수하나 장기간 분산안정성이 확보되지 않아 시간이 경과함에 따라 열전도도가 점점 감소하는 경향을 보인다. 또한 탄소나노튜브를 분산한 나노유체의 경우와 같이 유체의 점도가 크게 증가하여 실제 산업에 적용 시 커다란 동력손실을 초래할 수 있으며 열교환시스템에 파울링이 발생할 소지가 크다. 이러한 문제점을 해결하기 위해서는 나노유체에서 열전달이 일어나는 메커니즘이 규명되어야 하지만 아직 명확한 이론이나 가설이 정립되어 있지 않다. 이 논문에서는 나노유체가 높은 열전도율을 보이는 현상을 설명할 수 있는 몇 가지 이론을 살펴 보고 지금까지 개발된 안정성이 아주 높은 나노유체의 열전도 특성을 비교 분석하여 획기적인 열전도성 나노유체 개발 가능성을 살펴보고자 한다. 이를 위해 나노입자의 조성, 유체 내 농도 및 자기장 등이 나노유체의 열전도율에 미치는 영향을 연구하였다.

  • PDF

자기점서유체 댐퍼 코어의 최적화 설계를 위한 전자기장 해석 (Electro-Magnetic Field Analysis for Optimal design of Magneto-Rheological Fluid Damper Core)

  • 송준한;손성완;전종균;권영철;마양수
    • 한국산학기술학회논문지
    • /
    • 제9권6호
    • /
    • pp.1511-1517
    • /
    • 2008
  • 외부에서 인가되는 전류의 세기에 따라 결합력의 세기가 달라지는 자기점성유체의 특성을 이용한 자기점성 유체 댐퍼는 유체의 결합력을 통해 전단력을 발생시켜 진동의 제어가 가능하다. 자기점성유체 댐퍼의 성능을 좌우 하는 코일 작동부의 최적화를 위해 유한요소해석을 이용해 코일 형상에 따른 전자기력의 성능비교를 실시하였다. 또한 고효율 댐퍼를 제작하기 위한 방법으로 다단의 코일 작동부를 가지는 댐퍼를 제안하였으며, 기존의 댐퍼와의 전자기적 성능 비교를 통해 댐퍼의 성능 비교를 수행하고 제한된 조건에서 최대의 효과를 가질 수 있는 방안을 제시하고 그에 따른 전자기장 해석을 수행하였다.

자기변형 잉크젯헤드의 고점도 유체 토출 요구 압력에 관한 연구 (Study on the Highly Viscous Fluid Ejection Pressure of Magnetostrictive Inkjet Head)

  • 오옥균;박영우
    • 한국정밀공학회지
    • /
    • 제32권4호
    • /
    • pp.369-375
    • /
    • 2015
  • This paper presents ejection of high viscosity fluids with magnetostrictive inkjet printhead(Magjet), which is not common with any other printhead. The MagJet uses a magnetostrictive material, Terfenol-D rod with 10-mm in diameter and 50-mm in length, as an actuation mechanism. It has been known that high viscosity is often an obstacle in ejecting small and mono-disperse droplets. We calculated required pressure with fluidic inertia (Bernoulli equation) and viscous loss (Hagen Poiseuille equation). The required pressure for ejecting a droplet is 1300kPa. The generated force and displacement with Terfenol-D rod are estimated to be 480N (2600kPa) and $28{\mu}m$, respectively. It was enough that Magjet eject high viscosity fluid (Max 1000cP). The experiments are performed to eject the high viscosity fluid with Magjet. The ejection of high viscosity fluids is successful with the aid of Terfenol-D's high performance.

경사진 평행평판 내 고 점성유체의 혼합대류 열전달 특성 및 가시화에 관한 연구 (A Study on the Visualization and Characteristics of Mixed Convection between Inclined Parallel Plates Filled with High Viscous Fluid)

  • 박일룡;배대석
    • 설비공학논문집
    • /
    • 제18권9호
    • /
    • pp.698-706
    • /
    • 2006
  • Experiment and numerical calculation have been peformed to investigate mixed convection heat transfer between inclined parallel plates. Particle image velocimetry (PIV) with thermo-sensitive liquid crystal (TLC) tracers is used for visualizing and analysis. This method allows simultaneous measurement of velocity and temperature fields at a given instant of time. Quantitative data of the temperature and velocity are obtained by applying the color-image processing to a visualized image, and neural network is applied to the color-to-temperature calibration. The governing equations are discretized using the finite volume method. The results are presented for the Reynolds number ranges from 0.004 to 0.062, the angle of inclination, ${\Theta}$, from 0 to 45 degree and Prandtl number of the high viscosity fluid is 909. The results show velocity, temperature and mean Nusselt numbers distributions. It is found that the periodic flow of mixed convection between inclined parallel plates is shown at $0^{\circ}{\leq}{\Theta}<30^{\circ}$, Re<0.062, and the flow pattern can be classified into three patterns which depend on Reynolds number and the angle of inclination. The minimum Nusselt numbers occur at Re=0.05 regardless of the angle of inclination.