• Title/Summary/Keyword: 고추역병

Search Result 176, Processing Time 0.028 seconds

Review of Disease Incidence of Major Crops in 2003 (2003년 농작물 병해 발생개황)

  • Kim, Choong-Hoe
    • Research in Plant Disease
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • The year of 2003 was characterized as a cool humid year. Low temperature and frequent rains were continued during March to July, resulting in 1.6 times higher rainfalls and 32% less sunshine period compared to the average yean Due to 2003's climatic condition, rice blast, and bacterial leaf blight occurred severely. Higher rainfalls caused severe epidemic of phytophthora disease and, in case of red-pepper, 55% of cultivation acreage was devastated by the disease over the country. Besides, crop diseases which become severe under cool-humid conditions, such as gray mold, sclerotinia rot, downy mildew, increased significantly compared to the previous year. In fruit trees, brown spot of apple, and pear scab occurred severely causing much yield loss.

Parameter focusing on the fungicidal activity of methanesulfonamide and phenylhydrazone derivatives (Methanesulfonamide와 phenylhyazone 유도체의 살균활성에 대한 parameter focusing)

  • Sung, Nack-Do;Kim, Sun-Young;Choi, Joong-Kwon;Ok, Whan-Suk
    • The Korean Journal of Pesticide Science
    • /
    • v.3 no.2
    • /
    • pp.86-89
    • /
    • 1999
  • A series of methanesulfonamide (I a- I g) and phenylhydrazone (IIa-IIh) derivatives were synthesized and their fungicidal activity in vitro against gray mold (BC: Botrytis cinerea), phytophthora blight (PC: Phytophthora capsici) and sheath blight (RS: Rhizoctonia solani) were measured by agar dilution method. The (II) deriviatives showed higher activity than ( I ) derivitives. And the relative orders of the fungicidal activity are BC=PC>RS, Among these compounds, 3-chlorophenyl substituent, IIg showed the most highest activity ($pI_{50}=3.96$) against PC. From the parameter focusing technique, major factors on the activity were ovality, polar and logP constant and so on.

  • PDF

Isolation and Identification of Low Molecular Weight Compounds Produced by Bacillus subtilis HJ927 and Their Biocontrol Effect on the Late Blight of Pepper (Capsicum annuum L.) (Bacillus subtilis HJ927에 의해 생성된 화합물의 분리, 동정 및 고추(Capsicum annum L.) 역병방제 효과)

  • Lee, Hyun-Jin;Park, Keun-Hyung;Shim, Jae-Han;Park, Ro-Dong;Kim, Yong-Woong;Hwang-Bo, Hoon;Cho, Jeung-Yong;Kim, Young-Cheol;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.1
    • /
    • pp.25-31
    • /
    • 2005
  • A soil bacterium, Bacillus subtilis HJ927, exhibiting strong antagonistic property against pathogenic fungi was isolated from pepper fields infested with Phytophthora capsici. Pepper plants inoculated with P. capsici revealed severe root mortality while plants co-inoculated with B. subtilis HJ927 and P. capsici showed drastically reduced root mortality. Low molecular weight substances released by B. subtilis HJ927 mediated the plant protective effect. The anti-fungal compounds released by B. subtilis HJ927 were identified as 3-methylbutyric acid, 2-methylbutyric acid, and methyl 2-hydroxy, 3-phenylpropanoate by high-performance liquid chromatography and gas chromatography-mass spectrometry. In addition to these compounds, B. subtilis HJ927 also produced ${\beta}$-1,3-glucanase, a hydrolytic enzyme implicated in antifungal activity.

Phenyl substituent effect on the fungicidal activity of N-Phenyl-O-phenylthionocarbamate derivatives (N-Phenyl-O-phenylthionocarbamate 유도체의 항균활성에 미치는 phenyl 치환기의 효과)

  • Sung, Nack-Do;Soung, Min-Gyu
    • The Korean Journal of Pesticide Science
    • /
    • v.3 no.1
    • /
    • pp.29-36
    • /
    • 1999
  • A series of N-phenyl-O-phenylthionocarbamate derivatives were synthesized and determinated fungicidal activities in vitro against gray mold (Botrytis cinerea) and capsicum phytophthora blight (Phytophthora capsici) which showed resistance and sensitivity to benomyl and metalaxyl as systemic fungicides, respectively. The structure-activity relationship (SAR) was investigated by Free-Wilson analysis method and Hansch method. From the basis on the findings, the N-phenyl(X) groups had more contributions than O-phenyl(Y) groups did and ortho-substituents on the N-phenyl group showed high fungicidal activities. Especially, 4-cyano substituent, 2 as X-group showed 50% inhibition($pI_{50}=5.50$) of hyphae growth at 0.8ppm against resistance P. capsici (RPC) And hydroxyl substituents, 12 and 23 displayed the highest fungicidal activity against resistant B. cinerea (RBC), sensitive B. cinerea (SBC), and sensitive P. capsici (SPC). Antifungal activities of SPC were dependent upon molar refractivity (MR) constant and those of others relied on hydrophobic parameters (${\sigma}$ and logP). For increasing fungicidal activity against RPC and SBC, the optimum values of the sigma (${\sigma}$) and field(F) constants as electron withdrawing groups were 0.32 and 0.18, respectively.

  • PDF

Effects of Rain-shelter Types on Growth and Fruit Quality of Red Pepper (Capsicum annuum L. var. 'Keummaru') Cultivation in Paddy (고추 논재배 시 비가림형태가 생육 및 과실 품질에 미치는 영향)

  • Lee, Guang-Jae;Song, Myung-Gyu;Kim, Si-Dong;Nam, Sang-Young;Heo, Jeong-Wook;Yoon, Jung-Beom;Kim, Dong-Eok
    • Horticultural Science & Technology
    • /
    • v.34 no.3
    • /
    • pp.355-362
    • /
    • 2016
  • This study was carried out to investigate the effects of rain-shelter types on growth, and fruit quality of red pepper (Capsicum annuum, 'Kemmaru') cultured in paddy. Applied rain-shelter types were outfield (control), simple rain-shelter plastic house with 2 rows (2R), simple rain-shelter plastic house with 4 rows (4R), and perfect plastic house (House). The plant height was the highest in Houses treatment. There was no difference in leaf length and width among the rain-shelter treatments. The fresh and dry weight of red pepper was high in order of House > 4R > 2R > Control. The ASTA value is irregular tendency among the treatments. Hunter's color value 'a' and 'b' was not different from among the treatments. Phytophthora blight, powdery mildew, bacterial spot were not occurred in all of treatments, and Anthracnose was only occurred in control. Mite, Microcephalothrips abdominalis, and Bemisia tabaci were not occurred in all of treatments, and aphid, Helicoverpa assulta, and virus were occurred all of treatments as same degree. Our results will provide rain-shelter cultivation of red pepper can be increase dry yield and decrease disease and insects.

Plant Growth Promotion and Biocontrol Potential of Various Phytopathogenic Fungi Using Gut Microbes of Allomyrina dichotoma Larva (장수풍뎅이 유충의 장내 미생물을 이용한 다양한 식물 균류병의 생물적 방제 및 생장촉진)

  • Kim, Joon-Young;Kim, Byung-Sup
    • Research in Plant Disease
    • /
    • v.26 no.4
    • /
    • pp.210-221
    • /
    • 2020
  • This research was executed to select beneficial antagonists from digestive organ of Allomyrina dichotoma larva that can be put on environment friendly control against phytopathogenic fungi. We screened 38 bacterial strains inhibiting mycelial growth against eight plant pathogens through dual culture assay. The 10 strains among 38 bacterial strains were selected as beneficial microbes showing antifungal activity against Botrytis cinerea, Plasmodiophora brassicae, Colletotrichum acutatum and Phytophthora capsici through under greenhouse pot trials. The 10 bacterial strains that shown strongest antifungal activity were classified into 3 genera and 10 species, and identified as the genus Bacillus (DM146, DM152, DH2, and DH16), Paenibacillus (DF30, DH14, and DM142) and Streptomyces (DF137, DM48, and DH92) by morphological characteristics and 16s rRNA gene sequence. The 10 bacterial strains had solubilizing activity of insoluble phosphates, production of IAA (indole-3-acetic acid), β-1,3-glucanase and protease. Among the 10 bacterial strains, DM152 strain was produced significant enhancement of all growth parameters of chili pepper and tomato seedlings under greenhouse condition. Thus, this study demonstrated that gut microbes of Allomyrina dichotoma larva will be useful as a potential biocontrol agent against plant pathogens and biofertilizer.

Antifungfal Activity Against Plant Pathogenic Fungi on Insect Enterobacteriaceae (식물병원성 곰팡이에 대한 곤충장내세균의 항균활성)

  • Oh, San Na;Seo, Mi Ja;Youn, Young Nam;Yu, Yong Man
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.1
    • /
    • pp.71-79
    • /
    • 2015
  • In order to investigating the effects of antifungal activity of intestinal bacteria obtained from insect, it was identified these bacteria isolated from the gut. In this result, total 49 isolates of intestinal bacteria were identified from 10 kinds of insect species. It was that 4 isolates including Cedecea sp. from Nesidiocoris tenuis, 3 isolates including Enterobacter sp. from Odontotaenius disjunctus, 4 isolates including Acinetobacter sp. from Reticulitermes speratus, 4 isolates including Clavibacter sp. from Riptortus clavatus, 11 isolates including Bacillus sp. from Lema decempunctata, 3 isolates including Enterococcus sp. from Henosepilachna vigintioctopunctata 2 isolates including Staphylococccus sp. from Harmonia axyridis, 5 isolates including Enterobacter asburiae from Popillia mutans, 7 isolates including Aeromonas sp. from Hydrophilus acuminatus, and 7 isolates including Brucella sp. from Anomala octiescostata. In order to investigating antifungal activity against plant-pathogenic fungi, Altanaria solani, Colletotrichum gloeosporioides, Botrytis cinerea, Fusarium oxysporum, Phytophthora capsici, Rhizoctonia solani and Selerotinia sclerotiorum were dual cultured with each 49 gut enterobacteriaceae. As these results showed that many isolates have the antifungal activities including 26 isolates against A. solani, 6 isolates against B. cinerea, 13 isolates against C. gloeosporioides, 11 isolates against F. oxysporum, 17 isolates P. capsici, 2 isolates against R. solani and 2 isolates against S. sclerotiorum. Pseudomonas aeruginosa was showed strong antifungal activity against all of tested plant pathogens. It might be taken a potential for application against plant-pathogenic fungi with useful control agent.

Screening of Biologically Active Compounds from Weeds I (잡초(雜草)에 함유(含有)된 생리활성물질(生理活性物質) 탐색(探索) I)

  • Kim, C.J.;Kang, B.H.;Lee, I.K.;Ryoo, I.J.;Park, D.J.;Lee, K.H.;Lee, H.S.;Yoo, I.D.
    • Korean Journal of Weed Science
    • /
    • v.14 no.1
    • /
    • pp.16-22
    • /
    • 1994
  • Ninty three species of domestic weeds were collected and screened for antimicrobial, antitumor, antioxidant and herbicidal activities. Among them, few showed antifungal activities. Cuscuta japonica showed inhibitory activity against Alternaria mali, Ambrosia artemisiifolia and Geranium sibiricum against Phytophthora capsici, Aster yomema and Aster pilosus against Phytophthora parasitica. Ambrosia artemisiifolia, Artemisia princeps, Artemisia capillaris, Ludwigia prostrata, Chrysanthemum zawadskii, Bidens frondosa, and Geranium sibiricum showed broad antibacterial activities. Carex chordorhiza, Artemisia capillaris, Persicaria nodosa, Senecio koreanus, Pariicum bisulcatum, Geranium sibiricum showed antiblebbing activity on human chronic leukemia K562 cell, among them, Persicaria nodosa was the strongist. Angelica decursiva, Equisetum arvense, Cimicifuga heracleifolia, Persicaria nodosa, Geranium sibiricum, Oenothera odorata, Cyperus sanguinolentus showed antioxidant activities. Ludwigia prostrata and Peucedanum terebinthaceum showed strong herbicidal activities.

  • PDF

Antifungal Activity of Benzoic Acid from Bacillus subtilis GDYA-1 against Fungal Phytopathogens (Bacillus subtilis GDYA-1로부터 분리한 benzoic acid의 식물병원성 곰팡이에 대한 항균활성)

  • Yoon, Mi-Young;Seo, Kook-Hwa;Lee, Sang-Heon;Choi, Gyung-Ja;Jang, Kyoung-Soo;Choi, Yong-Ho;Cha, Byeong-Jin;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.18 no.2
    • /
    • pp.109-116
    • /
    • 2012
  • A bacterial strain antagonistic to some fungal phytopathogens was isolated from the stem of a Persimmon tree in Yeongam, Korea. This bacterium was identified as Bacillus subtilis by 16S rRNA gene sequencing and designated as B. subtilis GDYA-1. In in vivo experiment, the fermentation broth exhibited antifungal activities against Magnaporthe oryzae on rice plants, Phytophthora infestans on tomato plants, and Puccinia recondita on wheat plants. We isolated one antifungal compound and its chemical structure was determined by mass and $^1H$-NMR spectral data. The antifungal substance was identified as benzoic acid. It inhibited mycelial growth of M. oryzae, Rhizoctonia solani, Sclerotinia sclerotiorum, and P. capsici with minimum inhibition concentration (MIC) values, ranging from 62.5 to 125 ${\mu}g/ml$. Moreover, the substance effectively suppressed Phytophthora blight of red pepper caused by P. capsici in a pot experiment. To the author's knowledge, this is the first report on the antifungal activity of benzoic acid against phytopathogenic fungi. Benzoic acid and B. subtilis GDYA-1 may contribute to environmental-friendly protect crops from phytopathogenic fungi.

Biological Control of Tomato and Red Pepper Powdery Mildew using Paenibacillus polymyxa CW (Paenibacillus polymyxa CW를 이용한 고추 및 토마토 흰가루병 방제)

  • Kim, Yong-Ki;Choi, Eun-Jung;Hong, Sung-Jun;Shim, Chang-Ki;Kim, Min-Jeong;Jee, Hyeong-Jin;Park, Jong-Ho;Han, Eun-Jung;Jang, Bo-Kyung;Yun, Jong-Cheul
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.379-387
    • /
    • 2013
  • In order to improve practical utility of agro-microorganisms (AMs) which had been cultured and disseminated to promote plant growth and to control crop diseases, 51 isolates of AMs were collected from 18 agricultural extension centers in local government and screened for multi-functions such as antifungal activity, activities of phosphorus solubilization, IAA and siderophore production, nitrogen fixation, and hydrolytic enzyme activity. Finally we selected one isolate showing good antifungal activity and multi-functions related to plant growth and disease control. The selected isolate, Paenibacillus polymyxa CW, showed good inhibitory effect against plant pathogens, Pyricularia gresea, Colletotrichum acutatum, Fusarium oxysporum, Phomopsis sp., Aspergillus niger, Rhizoctonia solani and Phytophthora capsici. Suppressive effect of P. polymyxa CW against the used plant pathogens except for R. solani was much higher than that of P. polymyxa AC-1 storing in National Academy of Agricultural Science. We found P. polymyxa CW isolate showed good activity in siderophore and IAA formation, and nitrogen fixation. With P. polymyxa CW isolate, siderophore formation activity was similar to that of P. polymyxa AC-1, but IAA formation and nitrogen fixation activity was much higher than that of P. polymyxa AC-1. However neither P. polymyxa CW nor P. polymyxa AC-1 showed hydrolytic enzyme (chitinase, pectinase and cellulase) activity. The treatment of P. polymyxa CW with culture suspension of different cell density ($10^8$, $10^7$. $10^6$ cfu/ml) showed that the highest density reduced incidence of red pepper powdery mildew by 68.3% after 10 days of application. As application density of P. polymyxa CW was decreased, its control efficacy was proportionally decreased. In addition, when P. polymyxa CW was treated to control tomato powdery mildew at the same concentrations and their control effects were investigated after 7 days of inoculation, disease incidence was 0.03, 19.5, 45.7%, respectively, compared to 56.3% that of untreated check. Like red pepper powdery mildew, increase of application density of P. polymyxa CW resulted in increase of its control efficacy proportionally. P. polymyxa CW showed a density-dependent control efficacy against red pepper and tomato powdery mildews. Therefore we think that mode of action of the antagonist for suppressing two powdery mildew diseases might be antibiosis and density of more than $10^8cfu/ml$ was needed to control effectively the two diseases. On this basis, we think that P. polymyxa CW can be a promising control agent for suppressing powdery mildews of red pepper and tomato.