• Title/Summary/Keyword: 고장 해밀톤 성질

Search Result 10, Processing Time 0.021 seconds

Fault Hamiltonicity of Meshes with Two Wraparound Edges (두 개의 랩어라운드 에지를 갖는 메쉬의 고장 해밀톤 성질)

  • 박경욱;이형옥;임형석
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.7_8
    • /
    • pp.434-444
    • /
    • 2003
  • In this paper, we consider the hamiltonian properties of m$\times$n (m$\geq$2, n$\geq$3) mesh networks with two wraparound edges on the first row and last row, called M$_2$(m, n), in the presence of a faulty node or link. We prove that M$_2$(m, n) with odd n is hamiltonian-connected and 1-fault hamiltonian. In addition, we prove that M$_2$(m, n) with even n is strongly hamiltonian laceable and 1-vertex fault tolerant strongly hamiltonian laceable.

Fault Hamiltonicity of Double Loop Network G (mn;1,m) with Even m and n (m과 n이 짝수인 이중 루프 네트워크 G(mn;,m)의 고장 해밀톤 성질)

  • 박정흠;김희철
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.680-682
    • /
    • 2000
  • 이 논문은 에지와 정점에 고장이 있는 이중 루프 네트워크의 해밀톤 성질을 고려한다. 이중 루프 네트워크 G(mn;1,m)은 m$\times$n 그리드 그래프에 에지를 추가한 4-정규 그래프이다 m과 n이 모두 짝수인 이중 루프 네트워크G(mn;1,m)은 고장난 요소(에지와 정점)의 수가 1이하인 경우에 해밀톤 연결되어 있고, 고장난 요소의 수가 2이하인 경우에 항상 해밀톤 사이클을 가짐을 보인다.

  • PDF

Edge Fault Hamiltonian Properties of Mesh Networks with Two Additional Links (메쉬에 두 개의 링크를 추가한 연결망의 에지 고장 해밀톤 성질)

  • Park, Kyoung-Wook;Lim, Hyeong-Seok
    • The KIPS Transactions:PartA
    • /
    • v.11A no.3
    • /
    • pp.189-198
    • /
    • 2004
  • We consider the fault hamiltonian properties of m ${\times}$ n meshes with two wraparound links on the first row and the last row, denoted by M$_2$(m,n), (m$\geq$2, n$\geq$3). M$_2$(m,n), which is bipartite, with a single faulty link has a fault-free path of length mn-l(mn-2) between arbitrary two nodes if they both belong to the different(same) partite set. Compared with the previous works of P$_{m}$ ${\times}$C$_{n}$ , it also has these hamiltonian properties. Our result show that two additional wraparound links are sufficient for an m${\times}$n mesh to have such properties rather than m wraparound links. Also, M$_2$(m,n) is a spanning subgraph of many interconnection networks such as multidimensional meshes, recursive circulants, hypercubes, double loop networks, and k-ary n-cubcs. Thus, our results can be applied to discover fault-hamiltonicity of such interconnection networks. By applying hamiltonian properties of M$_2$(m,n) to 3-dimensional meshes, recursive circulants, and hypercubes, we obtain fault hamiltonian properties of these networks.

(Fault Haniltonicity of Double Loop Networks G(mn;1,m) with even m and n) (m과 n이 짝수인 이중 루프 네트워크 G(mn;1,m)의 고장 해밀톤 성질)

  • Park, Jeong-Heum;Kim, Hui-Cheol
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.10
    • /
    • pp.868-879
    • /
    • 2000
  • 이 논문은 에지나 정점, 혹은 모두에 고장이 있는 이중 루프 네트워크의 해밀톤 성질을 고려한다. 이중 루프 네트워크 G(mn;1,m)은 m$\times$m 그리드 그래프에 에지를 추가한 4-정규 그래프이다. m 과 n 이 모두 짝수인 이중 루프 네트워크 G(mn;1,m)은 고장난 요소(에지와 정점)의 수가 1이하인 경우에 해밀톤 연결되어 있고, 고장난 요소의 수가 2 이하인 경우에 항상 해밀톤 사이클을 가짐을 보인다.

  • PDF

Fault Hamiltonian Properties of 2D mesh networks with Two Additional Links (2차원 메쉬에 두개의 링크를 추가한 연결망의 고장 해밀톤 성질)

  • Park, Kyoung-Wook;Lim, Hyeong-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11a
    • /
    • pp.153-156
    • /
    • 2003
  • 본 논문에서는 첫 행과 마지막 행에 추가 링크를 갖는 $m{\times}n$ 메쉬 연결망 $M_{2}(m,\;n)$의 고장 해밀톤 성질을 고려한다. 이분 그래프인 $M_{2}(m,\;n)$에 하나의 결함 링크가 발생하더라도 임의의 두 노드가 다른(같은) 집합에 속한 경우 두 노드를 잇는 길이 mn - 1(mn - 2)인 경로가 존재함을 보인다. 또한 하나의 결함 노드 또는 링크가 있는 경우 임의의 두 노드를 잇는 적어도 길이 mn - 4인 경로가 존재함을 보인다. 이러한 결과들을 이용하여 짝수개의 노드를 갖는 3차원 메쉬의 고장 해밀톤 성질을 보인다.

  • PDF

Fault-hamiltonicity of Bipartite Double Loop Networks (이분 그래프인 이중 루프 네트워크의 고장 해밀톤 성질)

  • 박정흠
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.1_2
    • /
    • pp.19-26
    • /
    • 2004
  • In this paper, we investigate the longest fault-free paths joining every pair of vertices in a double loop network with faulty vertices and/or edges, and show that a bipartite double loop network G(mn;1, m) is strongly hamiltonian-laceable when the number of faulty elements is two or less. G(mn;1, m) is bipartite if and only if m is odd and n is even.

Strongly Hamiltonian Laceability of Mesh Networks (메쉬 연결망의 강한 해밀톤 laceability)

  • Park Kyoung-Wook;Lim Hyeong-Seok
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.8
    • /
    • pp.393-398
    • /
    • 2005
  • In interconnection networks, a Hamiltonian path has been utilized in many applications such as the implementation of linear array and multicasting. In this paper, we consider the Hamiltonian properties of mesh networks which are used as the topology of parallel machines. If a network is strongly Hamiltonian laceable, the network has the longest path joining arbitrary two nodes. We show that a two-dimensional mesh M(m, n) is strongly Hamiltonian laceabie, if $m{\geq}4,\;n{\geq}4(m{\geq}3,\;n{\geq}3\;respectively)$, and the number of nodes is even(odd respectively). A mesh is a spanning subgraph of many interconnection networks such as tori, hypercubes, k-ary n-cubes, and recursive circulants. Thus, our result can be applied to discover the fault-hamiltonicity of such networks.

Paired Many-to-Many Disjoint Path Covers in Recursive Circulants and Tori (재귀원형군과 토러스에서 쌍형 다대다 서로소인 경로 커버)

  • Kim, Eu-Sang;Park, Jung-Heum
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.1
    • /
    • pp.40-51
    • /
    • 2009
  • A paired many-to-many k-disjoint path cover (paired k-DPC) of a graph G is a set of k disjoint paths joining k distinct source-sink pairs in which each vertex of G is covered by a path. In this paper, we investigate disjoint path covers in recursive circulants G($cd^m$,d) with $d{\geq}3$ and tori, and show that provided the number of faulty elements (vertices and/or edges) is f or less, every nonbipartite recursive circulant and torus of degree $\delta$ has a paired k-DPC for any f and $k{\geq}1$ with $f+2k{\leq}{\delta}-1$.

Unpaired Many-to-Many Disjoint Path Covers in Hypercube-Like Interconnection Networks (하이퍼큐브형 상호연결망의 비쌍형 다대다 서로소인 경로 커버)

  • Park, Jung-Heum
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.10
    • /
    • pp.789-796
    • /
    • 2006
  • An unpaired many-to-many k-disjoint nth cover (k-DPC) of a graph G is a set of k disjoint paths joining k distinct sources and sinks in which each vertex of G is covered by a path. Here, a source can be freely matched to a sink. In this paper, we investigate unpaired many-to-many DPC's in a subclass of hpercube-like interconnection networks, called restricted HL-graphs, and show that every n-dimensional restricted HL-graph, $(m{\geq}3)$, with f or less faulty elements (vertices and/or edges) has an unpaired many-to-many k-DPC for any $f{\geq}0\;and\;k{\geq}1\;with\;f+k{\leq}m-2$.

Matching Preclusion Problem in Restricted HL-graphs and Recursive Circulant $G(2^m,4)$ (제한된 HL-그래프와 재귀원형군 $G(2^m,4)$에서 매칭 배제 문제)

  • Park, Jung-Heum
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.2
    • /
    • pp.60-65
    • /
    • 2008
  • The matching preclusion set of a graph is a set of edges whose deletion results in a graph that has neither perfect matchings nor almost perfect matchings. The matching preclusion number is the minimum cardinality over all matching preclusion sets. We show in this paper that, for any $m{\geq}4$, the matching preclusion numbers of both m-dimensional restricted HL-graph and recursive circulant $G(2^m,4)$ are equal to degree m of the networks, and that every minimum matching preclusion set is the set of edges incident to a single vertex.