• Title/Summary/Keyword: 고유 진동모드

Search Result 563, Processing Time 0.031 seconds

Evaluation of the Natural Vibration Modes and Structural Strength of WTIV Legs based on Seabed Penetration Depth (해상풍력발전기 설치 선박 레그의 해저면 관입 깊이에 따른 고유 진동 모드와 구조 강도 평가)

  • Myung-Su Yi;Kwang-Cheol Seo;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.127-134
    • /
    • 2024
  • With the growth of offshore wind power generation market, the corresponding installation vessel market is also growing. It is anticipated that approximately 100 installation vessels will be required in the of shore wind power generation market by 2030. With a price range of 300 to 400 billion Korean won per vessel, this represents a high-value market compared to merchant vessels. Particularly, the demand for large installation vessels with a capacity of 11 MW or more is increasing. The rapid growth of the offshore wind power generation market in the Asia-Pacific region, centered around China, has led to several discussions on orders for operational installation vessels in this region. The seabed geology in the Asia-Pacific region is dominated by clay layers with low bearing capacity. Owing to these characteristics, during vessel operations, significant spudcan and leg penetration depths occur as the installation vessel rises and descends above the water surface. In this study, using penetration variables ranging from 3 to 21 m, the unique vibration period, structural safety of the legs, and conductivity safety index were assessed based on penetration depths. As the penetration depth increases, the natural vibration period and the moment length of the leg become shorter, increasing the margin of structural strength. It is safe against overturning moment at all angles of incidence, and the maximum value occurs at 270 degrees. The conditions reviewed through this study can be used as crucial data to determine the operation of the legs according to the penetration depth when developing operating procedures for WTIV in soft soil. In conclusion, accurately determining the safety of the leg structure according to the penetration depth is directly related to the safety of the WTIV.

Lightweight Design and Structural Stability of Wide Impeller for Lage-area Surface Treatment (대면적 표면처리용 광폭 임펠러의 경량 설계 및 구조적 안정성)

  • Kim, Taehyung;Jeong, Junhyeong;Cha, Joonmyung;Seok, Taehyeon;Lee, Sechang
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.18-24
    • /
    • 2020
  • In this study, a lightweight wide impeller for large-area surface treatment was designed and structural stability was confirmed based on finite element(FE) analysis. A lightweight bracket FE model was established through topology optimization, and the optimal FE model was selected after structural analysis. The bending deformation FE analysis was performed, and bending deformation was included in the allowable deformation range. In addition, FE modal analysis was performed, and the range of safe speed(RPM) by rotation was suggested. Ultimately, it was confirmed that this analytical technique is effective for design the lightweight wide impeller.

Seismic Analysis of Nuclear Power Equipment Related to Design (원전기자재 설계와 관련된 내진해석)

  • Lee, Woo-Hyung;Cho, Jong-Rae;Roh, Min-Sik;Ryu, Jeong-Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.317-323
    • /
    • 2011
  • We use the finite element method to analyze the seismic design of a liquid storage tank for a polar crane at a nuclear power plant. We obtained the natural frequency and vibration modes by modal analysis, and we evaluated the seismic stability by response spectrum analysis. Furthermore, the seismic analysis of the tank was accomplished by analyzing not only the forces applied to the wall by the sloshing of the liquid, but also the safe-shutdown earthquake condition for the tank. We propose a seismic-design process and a seismic-analysis method for liquid storage tanks based on the commercial finite element analysis program, ANSYS.

Topology Optimization Design of Machine Tools Head Frame Structures for the Machining of Aircraft Parts (항공기부품가공용 공작기계 헤드프레임 구조의 위상최적화 설계)

  • Yun, Taewook;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.18-25
    • /
    • 2018
  • The head frame structure of a machine tool for aircraft parts, which requires machining precision and machining of difficult-to-cut materials is required to be light-weighted for precision high-speed machining and to minimize possible deformation by cutting force. To achieve high stiffness and for light-weight structure optimization design, a preliminary model was designed based on finite element analysis. The topology optimization design of light-weight, high stiffness, and low vibration frame structure were performed by minimizing compliance. As a result, the frame weight decreased by 17.3%, the maximum deflection was less than 0.007 mm, and the natural frequency increased by 30.6%. The static stiffness was increased in each axis direction and the dynamic stiffness exhibited contrary results according to the axis. Optimized structure with the high stiffness of low vibration in topology optimization design was confirmed.

Identification of Dynamic Characteristics Using Vibration Measurement Data of Saemangeum Mangyeong Offshore Observation Tower and Numerical Model Updating by Pattern Search Method (새만금 만경해상관측타워의 진동계측자료를 이용한 동특성 분석과 패턴서치 방법에 의한 수치해석모델 개선)

  • Park, Sangmin;Yi, Jin-Hak;Cho, Cheol-Ho;Park, Jin-Soon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.285-295
    • /
    • 2020
  • In the case of small observation towers located at sea, it is necessary to confirm the change in dynamic characteristics due to the influence of environmental loads. In this study, the dynamic characteristics were analyzed and the numerical analysis model was designed through field dynamic response measurement on the Mangyeong Offshore Observation Tower (Mangyeong Tower) located near the Saemangeum Embankment. As a result of the measurement, the natural frequency was found to increase slowly as the tide level is lowered. In addition, it was confirmed that the same mode has two frequencies, which was judged to be a phenomenon in which the natural frequency was partially increased when the pile and the ground contacted by scouring. For numerical analysis, the upper mass, artificial fixity point, scour depth and fluid influences are reflected in the structural characteristics of the Mangyeong Tower. In addition, the model updating from the estimated natural frequency and pattern search algorithm was performed. From the model updating, it is expected that it can be applied to future studies on stability of Mangyeong Tower.

Analysis Model for Design Based on Stiffness Requirement of Direct Drive Electromechanical Actuator (직구동 전기기계식 구동기의 강성요구규격에 기반한 설계용 해석모델)

  • Oh, Sang Gwan;Lee, Hee Joong;Park, Hyun Jong;Oh, Dongho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.738-746
    • /
    • 2019
  • Instead of hydraulic actuation systems, an electromechanical actuation system is more efficient in terms of weight, cost, and test evaluation in the thrust vector control of the 7-ton gimbal engine used in the Korea Space Launch Vehicle-II(KSLV-II) $3^{rd}$ stage. The electromechanical actuator is a kind of servo actuator with position feedback and uses a BLDC motor that can operate at high vacuum. In the case of the gimballed rocket engine, a synthetic resonance phenomenon may occur due to a combination of a vibration mode of the actuator itself, a bending mode of the launcher structure, and an inertial load of the gimbals engine. When the synthetic resonance occurs, the control of the rocket attitude becomes unstable. Therefore, the requirements for the stiffness have been applied in consideration of the gimbal engine characteristics, the support structure, and the actuating system. For the 7-ton gimbal engine of the KSLV-II $3^{rd}$ stage, the stiffness requirement of the actuation system is $3.94{\times}10^7N/m$, and the direct drive type electromechanical actuator is designed to satisfy this requirement. In this paper, an equivalent stiffness analysis model of a direct drive electromechanical actuator designed based on the stiffness requirements is proposed and verified by experimental results.

Field Application Analysis of Cable Tension Measuring Device on Cable-Stayed Bridges (사장교 케이블장력 계측장치의 현장적용성 분석)

  • Lee, Hyun-Chol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.295-311
    • /
    • 2021
  • In this study, an experiment was carried out on the field applicability of tension measuring devices of the cables in cable-stayed bridges. The vibration method was used to estimate the tension of cables of cable-stayed bridge, and the mode characteristics of the cable were analyzed using a cable tension measuring device. GTDL360, NI Module, and 9 Axes Motion Sensorwere applied to estimate the cable tension of five target bridges. Numerical analysis of the five target bridges was conducted to analyze the natural frequency of the cable and cable tension. The estimated tension of the cable based on field measurements and estimated tension of cable by numerical analysis were compared with the estimated tension of the cable based on field measurements. The analysis showed that the measured tension of the cable based on field measurements was within the margin of error. Therefore, it is safe to apply these measuring devices to the site. As a result of comparing and analyzing the values of the acceleration-based cable estimation tension and numerical analysis of the field demonstration bridge, the acceleration-based cable estimation of tension is deemed appropriate within the allowable range. On-site applicability analysis revealed limitations of the measuring devices, such as the installation location of sensors and weather conditions, so continuous follow-up research on smart cable tension measuring systems is expected.

Nonlinear Seismic Analysis of a Three-dimensional Unsymmetrical Reinforced Concrete Structure (3차원 비대칭 철근콘크리트 구조물의 비선형 지진응답해석)

  • Lim, Hyun-Kyu;Lee, Young-Geun;Kang, Jun Won;Chi, Ho-Seok;Cho, Ho-Hyun;Kim, Moon-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.429-436
    • /
    • 2014
  • This paper presents the seismic performance of a geometrically unsymmetrical reinforced concrete building considering torsional effect and material nonlinearity of concrete and steel. The reinforced concrete building is a structure for seismic performance evaluation in the SMART-2013 international benchmark program. Nonlinear constitutive models for concrete and steel were constructed, and their numerical performance was demonstrated by various local tests. Modal analysis showed that the first three natural frequencies and mode shapes were close to the experimental results from the SMART-2013 program. In the time history analysis for low-intensity seismic loadings, displacement and acceleration responses at sampling points were similar to the experimental results. In the end, nonlinear time history analysis was conducted for Northridge earthquake to predict the behavior of the reinforced concrete structure under high-intensity seismic loadings.

Laboratory Validation of Bridge Finite Model Updating Approach By Static Load Input/Deflection Output Measurements (정적하중입력/변위출력관계를 이용한 단경간 교량의 유한요소모델개선기법: 실내실험검증)

  • Kim, Sehoon;Koo, Ki Young;Lee, Jong-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.10-17
    • /
    • 2016
  • This paper presents a laboratory validation of a new approach for Finite Element Model Updating(FEMU) on short-span bridges by combining ambient vibration measurements with static load input-deflection output measurements. The conventional FEMU approach based on modal parameters requires the assumption on the system mass matrix for the eigen-value analysis. The proposed approach doesn't require the assumption and even provides a way to update the mass matrix. The proposed approach consists of two steps: 1) updating the stiffness matrix using the static input-deflection output measurements, and 2) updating the mass matrix using a few lower natural frequencies. For a validation of the proposed approach, Young's modulus of the laboratory model was updated by the proposed approach and compared with the value obtained from strain-stress tests in a Universal Testing Machine. Result of the conventional FEMU was also compared with the result of the proposed approach. It was found that proposed approach successfully estimated the Young's modulus and the mass density reasonably while the conventional FEMU showed a large error when used with higher-modes. In addition, the FE modeling error was discussed.

Analytical and Experimental Study on the Quality Stability of Multi Roll Forming Process (멀티 롤 포밍 공정의 품질 안정성에 대한 해석 및 실험적 연구)

  • Son, Jae-Hwan;Han, Chang-Woo;Ryu, Kyung-Jin;Kang, Hae-Dong;Kim, Chul-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6977-6984
    • /
    • 2015
  • It is faced with the necessity of multi roll forming process of the ball slide rail which is made by adding the separate manufacturing processes, piercing, bending, trimming, to the roll forming process of a continuous plastic deformation, to improve the quality. However, the vibration and noise of the press machine in this process leads to the quality degradation of slide rail manufactured in this process. In this study, the roll was designed considering the optimal strain rates by the roll forming program with finite element method. And to estimate the static stability of the multi process the Von-Mises stress and deformation on the press was calculated with a structural analysis program. Also, to avoid driving systems in the resonance region their natural frequencies in the 1st and 2nd mode were calculated through the modal analysis. To verify its dynamic stability improvement the magnitudes of noise and vibration in the existing and studied system were compared using a microphone and accelerometers. And the widths and surface roughnesses of the rails which had been produced in the existing and studied process were measured. Therefore, it is known that multi roll forming process is stable in the analytical and experimental study.