DOI QR코드

DOI QR Code

Lightweight Design and Structural Stability of Wide Impeller for Lage-area Surface Treatment

대면적 표면처리용 광폭 임펠러의 경량 설계 및 구조적 안정성

  • Kim, Taehyung (Major of Aeronautical & Mechanical Engineering, Division of Aeronautics, Cheongju University) ;
  • Jeong, Junhyeong (Major of Aeronautical & Mechanical Engineering, Division of Aeronautics, Cheongju University) ;
  • Cha, Joonmyung (Major of Aeronautical & Mechanical Engineering, Division of Aeronautics, Cheongju University) ;
  • Seok, Taehyeon (Major of Aeronautical & Mechanical Engineering, Division of Aeronautics, Cheongju University) ;
  • Lee, Sechang (R&D Center, GMtech)
  • 김태형 (청주대학교 항공학부 항공기계공학전공) ;
  • 정준형 (청주대학교 항공학부 항공기계공학전공) ;
  • 차준명 (청주대학교 항공학부 항공기계공학전공) ;
  • 석태현 (청주대학교 항공학부 항공기계공학전공) ;
  • 이세창 (지엠테크 기술연구소)
  • Received : 2020.08.21
  • Accepted : 2020.09.16
  • Published : 2020.09.30

Abstract

In this study, a lightweight wide impeller for large-area surface treatment was designed and structural stability was confirmed based on finite element(FE) analysis. A lightweight bracket FE model was established through topology optimization, and the optimal FE model was selected after structural analysis. The bending deformation FE analysis was performed, and bending deformation was included in the allowable deformation range. In addition, FE modal analysis was performed, and the range of safe speed(RPM) by rotation was suggested. Ultimately, it was confirmed that this analytical technique is effective for design the lightweight wide impeller.

본 연구에서는 유한요소해석을 통해 대면적 표면처리가 가능한 경량 광폭 임펠러를 설계하였으며 구조적 안정성을 확인하였다. 먼저 위상최적화를 통해 경량 브라켓 해석모델을 수립하였으며, 구조해석을 통해 최적의 모델을 선정하였다. 3차원 경량 광폭 임펠러의 굽힘변형 해석을 수행하였으며 허용변형량 범위에 포함되었다. 또한 진동해석을 수행하여 1차 모드 고유진동수를 얻었으며 위험속도식에 대입하여 안전 운전속도(RPM) 기준을 제시하였다. 궁극적으로 본 연구의 해석적 기법이 경량 광폭 임펠러 설계에 유효함을 확인하였다.

Keywords

References

  1. Barun, H., Deb, K. A., Debarpan, G., 2018, Present status and some critical issues of abrasive jet materials processing: a review, Procedia Manufacturing, Vol. 20, pp. 523-529. https://doi.org/10.1016/j.promfg.2018.02.078
  2. Jianxin, D., 2005, Erosion wear of boron carbide ceramic nozzles by abrasive air-jets, Materials Science and Engineering: A, Vol. 408, pp. 227-233. https://doi.org/10.1016/j.msea.2005.07.029
  3. Jianxin, D., Yihua, F., Ding, Z., Shi, P., 2003, Wear behavior of ceramic nozzles in sand blasting treatments, Journal of the European Ceramic Society, Vol. 23, pp. 323-329. https://doi.org/10.1016/S0955-2219(02)00183-8
  4. Barun, H., Tina, G., Rasid, A., Santau, D., Saha, P., 2017, Abrasive jet system and its various applications in abrasive jet machining, erosion testing, shot-peening, and fast cleaning, Materials Today: Proceedings, Vol. 5, pp. 13061-13068. https://doi.org/10.1016/j.matpr.2018.02.293
  5. Song, S. Y., Park, J. Y., Kim, J. S., 2013, Finite Element Analysis for Shot Blasting Process Optimization of Stainless Steel, Journal of the Korean Society of Manufacturing Process Engineers, Vol. 12, No. 1, pp. 22-27.
  6. Raykowski, A., Hader, M., Maragno, B., Spelt, J. K., 2001, Blast cleaning of gas turbine components: deposit removal and substrate deformation, Wear, Vol. 249, pp. 126-131. https://doi.org/10.1016/S0043-1648(01)00518-X
  7. Hong, S. K., Hong, J. K., Kim, T. H., Park, J. K., Kim, S. H., Jang, G. W., 2012, Lightweight Design of a Vertical Articulated Robot Using Topology Optimization, The Korean Society of Mechanical Engineers, Vol. 36, No. 12, pp. 1683-1688. https://doi.org/10.3795/KSME-A.2012.36.12.1683
  8. Hong, J. P., 2018, Mechanical Design Theory and Practice, Kyobo Library, pp. 221-229.
  9. Son, J. W., Park, J. H., 2014, Analysis of Dangerous Speed of High-speed Rotating Body for Painting Robot, The Korean Society of Mechanical Engineers, Spring Conference, pp. 2291-2292.