DOI QR코드

DOI QR Code

Laboratory Validation of Bridge Finite Model Updating Approach By Static Load Input/Deflection Output Measurements

정적하중입력/변위출력관계를 이용한 단경간 교량의 유한요소모델개선기법: 실내실험검증

  • Received : 2015.07.24
  • Accepted : 2016.03.25
  • Published : 2016.05.01

Abstract

This paper presents a laboratory validation of a new approach for Finite Element Model Updating(FEMU) on short-span bridges by combining ambient vibration measurements with static load input-deflection output measurements. The conventional FEMU approach based on modal parameters requires the assumption on the system mass matrix for the eigen-value analysis. The proposed approach doesn't require the assumption and even provides a way to update the mass matrix. The proposed approach consists of two steps: 1) updating the stiffness matrix using the static input-deflection output measurements, and 2) updating the mass matrix using a few lower natural frequencies. For a validation of the proposed approach, Young's modulus of the laboratory model was updated by the proposed approach and compared with the value obtained from strain-stress tests in a Universal Testing Machine. Result of the conventional FEMU was also compared with the result of the proposed approach. It was found that proposed approach successfully estimated the Young's modulus and the mass density reasonably while the conventional FEMU showed a large error when used with higher-modes. In addition, the FE modeling error was discussed.

본 연구는 단경간 교량의 정적하중입력/변위출력관계를 이용한 새로운 교량 유한요소모델 개선 방법을 제안하였고, 실내 모형교량 실험을 통해 검증하였다. 기존의 유한요소모델개선기법은 실험으로부터 얻어진 모드계수와 유한요소모델로부터 예측된 모드계수가 유사해지도록 유한요소모델을 개선하는데, 이 과정에서 구조계의 질량행렬에 대한 가정을 필요로 한다. 제안된 기법은 질량행렬을 가정하지 않고, 오히려 질량행렬 추정을 가능하게 하는 장점을 가진다. 제안된 기법은 두 단계로 구성된다. 첫째, 정적 하중입력-변위응답으로부터 강성행렬을 개선하고, 둘째, 실측된 고유진동수를 이용하여 질량행렬을 개선한다. 실험검증을 위하여 실내 모형교량을 제작하였고, 제안된 기법을 이용하여 모형교량의 탄성계수를 추정하였으며, Universal Testing Machine으로 부터 얻어진 탄성계수와 비교하였다. 또한 기존의 유한요소모델개선기법으로 추정된 탄성계수와 비교하였다. 실험의 결과들로부터 제안된 기법이 합리적으로 탄성계수와 질량밀도를 추정하는 것이 관찰되었고, 기존의 유한요소모델개선기법은 고차모드를 사용했을 때 상대적으로 큰 오차를 주는 것이 관찰되었다. 추가적으로 유한요소모델링 오차에 대하여 토의하였다.

Keywords

References

  1. Bayraktar, A. and Can, A. (2010), Finite Element Model Updating of Komurhan Highway Bridge based on Experimental Measurements, Smart Structures and Systems, 6(4), 373-388. https://doi.org/10.12989/sss.2010.6.4.373
  2. Brincker, R., Zhang, L., and Zhang, P. (2001), Modal Identification of Output-only Systems Using Frequency Domain Decomposition, Smart Materials and Structures, IOP, 10(3), 441-445, ISSN 0964-1726. https://doi.org/10.1088/0964-1726/10/3/303
  3. Brownjohn, J. M. W. and Xia, P. Q. (2000), Dynamic Assessment of Curved Cable-stayed Bridge by Model Updating, Journal of Structural Engineering, 126, 252- 260. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:2(252)
  4. Brownjohn, J. M. W., Moyo, P., Omenzetter, P., and Lu, Y.(2003). Assessment of Highway Bridge Upgrading by Dynamic Testing and Finite-element Model Updating, Journal of Bridge Engineering, ASCE, 8(3), 162-172, ISSN 1084-0702. https://doi.org/10.1061/(ASCE)1084-0702(2003)8:3(162)
  5. By Nelder, J. A. and Mead, R. (1965), A Simplex Method for Function Minimization, The Computer Journal, 7(4), 308-313. https://doi.org/10.1093/comjnl/7.4.308
  6. Chang, C. C., Zhang, Q. W., Chang, T. Y. P. (2001), Finite-element Model Updating for the Kap Shui Mun Cable-stayed Bridge, Journal of Bridge Engineering, ASCE, 6(4), 285-293. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:4(285)
  7. Jaishi, B., Kim, H. J., Kim, M. K., Ren, W. X., and Lee, S. H. (2007), Finite Element Model Updating of Concrete-filled Steel Tubular Arch Bridge Under Operational Condition Using Modal Flexibility, Mechanical Systems and Signal Processing, 21, 2406-2426, ISSN 08883270. https://doi.org/10.1016/j.ymssp.2007.01.003
  8. Jung, D. S. and Kim, C. Y. (2011), Finite Element Model Updating on Small-scale Bridge Model Using the Hybrid Genetic Algorithm, Structure and In-frastructure Engineering, 9(5):481-495, 2013. ISSN 1573-2479.
  9. Kaloop, M. R. and Li, H. (2009), Monitoring of Bridge Deformation Using GPS Technique, KSCE Journal of Civil Engineering, 13(6), 423-431, ISSN 1226-7988. https://doi.org/10.1007/s12205-009-0423-y
  10. Kim, H. J., Cho, S. J., Sim, S. H. (2015), Finite Element Model Updating Based on Data Fusion of Acceleration and Angular Velocity, Journal of the Korea Institute for Structural Maintenance and Inspection, 19(2), 60-67, ISSN 2234-6937. https://doi.org/10.11112/jksmi.2015.19.2.060
  11. Lee, J. J. and Shinozuka, M. (2006), A Vision-based System for Remote Sensing of Bridge Displacement, NDT & E International, 39(5), 425-431, ISSN 09638695. https://doi.org/10.1016/j.ndteint.2005.12.003
  12. Liao, J., Tang, G., Meng, L., Liu, H., and Zhang, Y. (2012), Finite Element Model Updating based on Field Quasi-static Generalized Influence Line and its Bridge Engineering Application, Procedia Engineering, 31, 348-353, ISSN 18777058. https://doi.org/10.1016/j.proeng.2012.01.1035
  13. Lin, X., Zhang, L., Guo, Q., and Zhang, Y. (2009), Dynamic Finite Element Model Updating of Prestressed Concrete Continuous Box-girder Bridge, Earthquake Engineering and Engineering Vibration, 8(3), 399-407, ISSN 16713664. https://doi.org/10.1007/s11803-009-8127-3
  14. Macdonald, J. H. G. and Friswell, M. I. (2007), Finite Element Model Updating of a Suspension Bridge, In Inverse Problems, Design and Optimization Symposium.
  15. McCall, J. (2005), Genetic Algorithms for Modelling and Optimisation, Journal of Computational and Applied Mathematics, 184(1), 205-222, ISSN 0377-0427. https://doi.org/10.1016/j.cam.2004.07.034
  16. Park, W. S., Park, J. Y., and Kim, H. K. (2015), Candidate Model Construction of a Cable-stayed Bridge Using Parameterised Sensitivity-based Finite Element Model Updating, Structure and Infrastructure Engineering, 11(9), 1163-1177, ISSN 1573- 2479. https://doi.org/10.1080/15732479.2014.938662
  17. Peeters, B. and Roeck, G. D. (1999), Reference-based Stochastic Subspace Identification for Output-only Modal Analysis, Mechanical Systems and Signal Processing, 13(6), 855-878, ISSN 08883270. https://doi.org/10.1006/mssp.1999.1249
  18. Ren, W. X., Fang, S.E., and Deng, M. Y. (2011), Response Surface- based Finite-element-model Updating Using Structural Static Responses, J Eng Mech-ASCE, 137, 248-257. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000223
  19. Sanayei, M., Phelps, J. E., Sipple, J. D., and Bell, E. S. (2012), Instrumentation, Nondestructive Testing, and Finite-element Model Updating for Bridge Evaluation Using Strain Measurements, Journal of Bridge Engineering, 17, 130-138. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000228
  20. Schlune, H., Plos, M., and Gylltoft, K.(2009), Improved Bridge Evaluation through Finite Element Model Updating Using Static and Dynamic Measurements, Engineering Structures, 31(7), 1477-1485, ISSN 01410296. https://doi.org/10.1016/j.engstruct.2009.02.011
  21. Wang , H., Li, A. Q., and Li, J. (2010), Progressive Finite Element Model Calibration of a Long-span Suspension Bridge based on Ambient Vibration and Static Measurements, Engineering Structures, 32(9), 2546-2556, ISSN 01410296. https://doi.org/10.1016/j.engstruct.2010.04.028
  22. Westgate, R., Koo, K. Y., Brownjohn, J. M. W., and List, D. (2014), Suspension bridge Response due to Extreme Vehicle Loads, Structure and Infrastructure Engineering, 10(6), 821-833. https://doi.org/10.1080/15732479.2013.767844
  23. Xiao, X., Xu, Y., and Zhu, Q. (2014), Multiscale Modeling and Model Updating of a Cable-Stayed Bridge. II: Model Updating Using Modal Frequencies and Influence Lines, J. Bridge Eng., ASCE, 20(10), 1943-5592.