• Title/Summary/Keyword: 고유진동수

Search Result 1,730, Processing Time 0.031 seconds

Vibration Characteristics of the Point-symmetric Mode in a Spherical Piezoelectric Transducer (구형 압전 변환기의 점대칭 방사모드 진동 특성)

  • 전한용;김진오
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.8
    • /
    • pp.757-765
    • /
    • 2002
  • The object of this paper is to examine the vibration characteristics of the point-symmetric radial mode in a spherical piezoelectric transducer. The differential equations of piezoelectric radial motion are derived in terms of the radial displacement and electric potential, which are functions of the radial coordinate and time. Applying mechanical and electrical boundary conditions yields the characteristic equation of radial vibration. Numerical results of the natural frequencies are compared with the experimental measurements. The paper discusses the difference between piezoelectric and elastic resonances and the dependence of the natural frequencies on the radius and thickness of the piezoelectric spheres. As a result it is concluded for the first radial mode that the natural frequency is reduced due to the piezoelectric phenomenon and that the frequency exponentially decreases as the sphere radius increases.

Effects of Rotatory Inertia and Shear Deformation on Natural Frequencies of Arches with Variable Curvature (회전관성 및 전단변형이 변화곡률 아치의 고유진동수에 미치는 영향)

  • Oh, Sang Jin;Lee, Byoung Koo;Lee, In Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.673-682
    • /
    • 1997
  • The main purpose of this paper is to investigate the effects of rotatory inertia and shear deformation on the natural frequencies of arches with variable curvature. The differential equations are derived for the in-plane free vibration of linearly elastic arches of uniform stiffness and constant mass per unit length. The governing equations are solved numerically for parabolic, circular and elliptic geometries with hinged-hinged, hinged-clamped and clamped-clamped end constraints. For each cases, the four lowest frequency parameters are presented as functions of the two dimensionless system parameters; the arch rise to span length ratio, and the slenderness ratio.

  • PDF

Equation for Estimating Natural Frequencies of Initially Stressed Rectangular Plates (초기응력을 받는 직사각형판의 고유진동수 산정식 개발)

  • Park, Sung-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.150-159
    • /
    • 2014
  • A simplified method for the calculation of buckling and vibrational characteristics of initially stressed rectangular plate and antisymmetric angle-ply laminated plates is presented in this paper using the natural frequencies under unloading state. The equation of motion of rectangular plate with two opposite edges simply supported is investigated on the basis of Rayleigh-Ritz method and Mindlin plate theory with effect of the curvature term. The relationships of the non-dimensional natural frequencies with initial stresses the coeffcients of critical buckling and the boundaries of the dynamic principal instability region can be characterized by the non-dimensional natureal frequencies under unloading state. Numerical examples are presented to verify the simplified equations and to illustrate potential applications of the analysis.

Development of Artificial Neural Network Model for Estimation of Cable Tension of Cable-Stayed Bridge (사장교 케이블의 장력 추정을 위한 인공신경망 모델 개발)

  • Kim, Ki-Jung;Park, Yoo-Sin;Park, Sung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.414-419
    • /
    • 2020
  • An artificial intelligence-based cable tension estimation model was developed to expand the utilization of data obtained from cable accelerometers of cable-stayed bridges. The model was based on an algorithm for selecting the natural frequency in the tension estimation process based on the vibration method and an applied artificial neural network (ANN). The training data of the ANN was composed after converting the cable acceleration data into the frequency, and machine learning was carried out using the characteristics with a pattern on the natural frequency. When developing the training data, the frequencies with various amplitudes can be used to represent the frequencies of multiple shapes to improve the selection performance for natural frequencies. The performance of the model was estimated by comparing it with the control criteria of the tension estimated by an expert. As a result of the verification using 139 frequencies obtained from the cable accelerometer as the input, the natural frequency was determined to be similar to the real criteria and the estimated tension of the cable by the natural frequency was 96.4% of the criteria.

Comparison of Measured Natural Frequencies of a Railway Bridge Specimen Between Different Excitation Methods (철도교량 시험체의 가진방법에 따른 고유진동수 측정치 변동에 대한 비교 분석)

  • Kim, Sung-Il;Lee, Jungwhee;Lee, Pil-Goo;Kim, Choong-Eon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.535-542
    • /
    • 2010
  • Precise estimation of a structure's dynamic characteristics is indispensable for ensuring stable dynamic responses during lifetime especially for the structures which can experience resonance such as railway bridges. In this paper, the results of forced vibration tests of different excitation methods (vibration exciter and impact hammer) are compared to examine the differences and the cause of differences of extracted natural frequencies. Consequently a natural frequency modification method is suggested to eliminate effects of non-structural disturbance factors. Also, sequential forced vibration tests are performed before and after track construction according to the construction stage of a railway bridge, and the variation of natural frequencies are examined. Effect of added mass of vibration exciter and variation of support condition due to the level of excitation force are concluded as the major cause of natural frequency differences. Thus eliminating these effects can enhance the reliability of the extracted natural frequencies. Construction of track affects not only the mass of structure but also the stiffness of the structure. Also, the amount of increase in stiffness varies according to the level of structural deflection. Therefore, reasonable estimation of the level of structural response during operation is important for precise natural frequency calculation at design phase.

Forced Vibration Testing of a Four-Story Reinforced Concrete Frame Building (철근콘크리트조 4층 골조건물의 강제진동실험)

  • Yu, Eun-Jong;Wallace, John W.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.27-38
    • /
    • 2007
  • A series of forced vibration tests and ambient vibration measurement was conducted on a four-story reinforced concrete building damaged in the 1994 Northridge earthquake. Both low amplitude broadband and moderate amplitude harmonic excitation were applied using a linear shaker and two eccentric mass shakers, respectively, and ambient vibrations were measured before and after each forced vibration test. Accelerations, interstory displacements, and curvature distributions were monitored using accelerometers, LVDTs and concrete strain gauges. Natural frequencies and the associated mode shapes fur the first 7 modes were identified. Fundamental frequencies determined from the eccentric mass shaker tests were 70% to 75% of the values determined using ambient vibration data, and 92% to 93% of the values determined using the linear shaker test data. Larger frequency drops were observed in the NS direction of the building, apparently due to damage that was induced during the Northridge earthquake.

Verification of Finite Element Model for Composite Lattice Structures through Natural Frequency Test (고유진동수 시험을 통한 복합재 격자구조체의 유한요소모델 검증)

  • Im, Jaemoon;Shin, Kwangbok;Lee, Sangwoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.832-834
    • /
    • 2017
  • In this paper, the finite element models for composite lattice structures were verified through natural frequency test. Finite element models of composite lattice structure were generated using beam, shell and solid element. Natural frequencies were measured using impact test method under free-boundary condition. The natural frequencies of finite element analysis for shell and solid element showed a good agreement with experimental results. But beam element did not show a good agreement with experimental results, because beam element could not consider the degradation of mechanical properties of non-intersection parts for composite lattice structure.

  • PDF

Natural Frequency Characteristics of a Cylindrical Tank Filled with Bounded Compressible Fluid (압축성 유체로 충진된 원통형 탱크의 고유진동수의 특성)

  • 정경훈;김강수;박근배
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.291-302
    • /
    • 1997
  • This paper presents an analytical method for evaluating the free vibration of a circular cylindrical tank filled with bounded compressible fluid. The analytical method was developed by means of the finite Fourier series expansion method. The compressible fluid motion was determined by means of the linear velocity potential theory. To clarify the validity of the analytical method, the natural frequencies of a circular cylindrical tank with the clamped-clamped boundary condition, and filled with water, were obtained by the analytical method and the finite element method using a comercial ANSYS 5.2 software. Excellent agreement on the natural frequencies of the liquid-filled tank structure was found. The compressiblity and the fluid density effects on the normalized coupled natural frequencies were investigated. The density of fluid affects on all coupled natural frequencies of the tank, whereas the compressibility of fluid affects mainly on the natural frequencies of lower circumferential modes.

  • PDF

Calculation of the eigenfrequencies for an infinite circular cylinder (무한 원통형 실린더의 고유진동수에 관한 연구)

  • Baik, Kyungmin;Ryue, Jung-Soo;Shin, Ku-Kyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.16-23
    • /
    • 2016
  • Present study shows three different methods finding the eigenfrequencies of an infinite circular cylinder under free-vibration; Elasticity theory that can be applied to general case, thin-shell theory that can be effectively applied to the cylinders with small thickness, and numerical study using Finite Element Method (FEM). The results obtained from those methods were verified through the cross check among the calculations. Changing the thickness of the cylinder for a fixed outer radius, all the eigenfrequencies below 1 kHz were found and their dependences on the modal index and the thickness were observed.

Free Vibrations and Buckling Loads of Columns with Multiple Elastic Springs (여러 개의 스프링으로 탄성지지된 기둥의 자유진동 및 좌굴하중)

  • 이병구;이광범;오상진;이태기
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1067-1074
    • /
    • 2000
  • Numerical methods for calculating both the natural frequencies and buckling loads of columns with the multiple elastic springs are developed. In order to derive the governing equations of such columns, each elastic spring is modeled as a discrete elastic foundation with the finite longitudinal length. By using this model, the differential equations governing both the free vibrations and buckled shapes, respectively, of such columns are derided. These differential equations are solved numerically. The Runge- Kutta method is used to integrate the differential equations, and the determinant search method combined with Regula-Falsi method is used to determine the eingenvalues. namely natural frequencies and buckling loads. In the numerical examples, the clamped-clamped. clamped-hinged, hinged-clamped and hinged-hinged end constraints are considered. Extensive numerical results including the frequency parameters, mode shapes of free vibrations and buckling load parameters are presented in the non-dimensional forms.

  • PDF