• Title/Summary/Keyword: 고온 단열

Search Result 91, Processing Time 0.021 seconds

Greenhouse Cooling Using Air Duct and Integrated Fan and Pad System (일체형 팬 앤 패드 시스템과 에어 덕트를 이용한 온실 냉방)

  • Nam, Sang-Woon;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.20 no.3
    • /
    • pp.176-181
    • /
    • 2011
  • The fan and pad evaporative cooling system is one of the main cooling methods in greenhouses. Its efficiency is very high, but it has some disadvantages as temperature gradient in greenhouse is large. This study was conducted to reduce the internal temperature gradients in the fan and pad cooling greenhouses. Experiments on cooling performance were carried out in a greenhouse equipped with air duct and integrated fan and pad system as an idea of this study. It showed that the cooling efficiency of an integrated fan and pad system was 75.7% in the first stage and 88.6% in the second stage. When this cooling system was operated for an unshaded and a shaded greenhouse, there were cooling effects of $5.7\sim7.6^{\circ}C$ and $7.4\sim9.7^{\circ}C$ to the control greenhouse, respectively. Maximum temperature differences in a cooling greenhouse, with a length of 18m, were $1.6\sim1.7^{\circ}C$ for shaded conditions and $2.3\sim2.7^{\circ}C$ for unshaded conditions. This greenhouse cooling method, with air duct and integrated fan and pad system, can reduce about 40~50% of the internal temperature gradients in the usual fan and pad cooling greenhouses.

Study on Operating Limits of 5.56mm Rifle Overheat - Focusing on Human Engineering (5.56mm 소총 과열에 의한 운용한계 분석 - 인간공학 중심으로)

  • Lee, Ho-Jun;Choi, Si-Young;Shin, Tae-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.49-56
    • /
    • 2020
  • High temperature heat generated during rifle firing not only degrades the performance of the weapon, but also limits the user's operation. In this study, temperature change of handguard according to firing was measured with reference to Human Engineering criteria and the operability according to material was examined. Accordingly, for the firing test, three types of Korean rifle and one overseas model were selected for each material of handguard, and firing test was conducted using a contact type temperature meter. The test result shows that using a plastic handguard with low thermal conductivity and aluminum handguard with high thermal conductivity enabled the rifles to be operated with bare hands even when firing at more than 100 rounds at low atmospheric temperature. However, when firing more than 60 rounds at over 20℃ atmospheric temperature, aluminum handguard use is limited. When firing quickly over 100 rounds, handguard use is restricted regardless of its fabrication material. To eliminate operational limitations by overheating, it is necessary to eliminate direct contact with skin using gloves, vertical grips, etc. This study examined the operability of rifles in terms of thermal risk, and the resulting study results are expected to be used as basic data for Human Engineering of other rifles and munitions.

Coupled Thermal-Hydrological-Mechanical Behavior of Rock Mass Surrounding Cavern Thermal Energy Storage (암반공동 열에너지저장소 주변 암반의 열-수리-역학적 연계거동 분석)

  • Park, Jung-Wook;Rutqvist, Jonny;Ryu, Dongwoo;Synn, Joong-Ho;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.155-167
    • /
    • 2015
  • The thermal-hydrological-mechanical (T-H-M) behavior of rock mass surrounding a high-temperature cavern thermal energy storage (CTES) operated for a period of 30 years has been investigated by TOUGH2-FLAC3D simulator. As a fundamental study for the development of prediction and control technologies for the environmental change and rock mass behavior associated with CTES, the key concerns were focused on the hydrological-thermal multiphase flow and the consequential mechanical behavior of the surrounding rock mass, where the insulator performance was not taken into account. In the present study, we considered a large-scale cylindrical cavern at shallow depth storing thermal energy of $350^{\circ}C$. The numerical results showed that the dominant heat transfer mechanism was the conduction in rock mass, and the mechanical behavior of rock mass was influenced by thermal factor (heat) more than hydrological factor (pressure). The effective stress redistribution, displacement and surface uplift caused by heating of rock and boiling of ground-water were discussed, and the potential of shear failure was quantitatively examined. Thermal expansion of rock mass led to the ground-surface uplift on the order of a few centimeters and the development of tensile stress above the storage cavern, increasing the potential of shear failure.

Experimental and Numerical Studies on the Failure of Curtain Wall Double Glazed for Radiation Effect (커튼월 이중 유리 외장재 파단에 대한 실험 및 수치해석 연구)

  • Nam, Jiwoo;Ryou, Hong-Sun;Kim, Dong-Joon;Kim, Sung-Won;Nam, Jun-Seok;Cho, Seongwook
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.40-44
    • /
    • 2015
  • National and international standards for curtain wall glass are focused on wind pressure and insulation performance, but disasters such as fires and earthquakes are not considered. Failure of curtain wall glass during a fire in a skyscraper increases the loss of lives and property due to the spread of fire. Therefore, the fire resistance of curtain wall glass should be investigated, and technology to prevent glass failure should be developed to prevent fire damage due to spreading fire. It is important to predict the starting point of cracks and the cause of glass failure to prevent it effectively using the limited water in a skyscraper. In this study, double glazed glass was exposed to a radiator in an experiment performed to analyze the thermal characteristics. The results show that glass that was not directly exposed to high temperature and pressure was broken. To identify this failure case, numerical analysis was performed. Three glass specimens were installed in an ISO 9705 room and exposed to radiation using a radiator, and a thermocouple was used to measure the temperature on the surface of the glass. Widely used double glazed glass was analyzed for weakness to fire.

A Study on the Fire Resistance Performance of RC Structure Void Slab Using The Lightweight Hollow Sphere (경량 중공체를 적용한 RC조 중공슬래브의 내화성능에 관한 연구)

  • Cho, Bum-Yean;Yeo, In-Hwan;Kim, Heung-Youl;Kim, Hyung-Jun;Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.89-97
    • /
    • 2011
  • This study is for evaluating the fire resistance performance (1~2 h) of the RC Structure void slab using the Lightweight Hollow Sphere, which can reduce the unnecessary dynamic part of removing the central concrete. For this experiment, we set up depth of concrete cover, live load, and span length as the factors. The result comes out with all the slabs under those conditions can ensure the goal fire resistance performance (120 min). And among these factors, the resisting capability changes more sensitively with the live load rather than the thickness of cover. And the shorter span length could assure the better the fire resistance performance. The result observing the character in high temperature of the Lightweight Hollow Sphere which does not used as existing RC structure slab, a delay section in temperature change is occurred due to the Glass Transition in $100^{\circ}C$. And heat transfer by conduction does not occur at lightweight hollow sphere because the polystyrene in EPS (Expanded Polystyrene) melts point in $185^{\circ}C$. Therefore temperature at lightweight hollow sphere is lower than the concrete and rebar.

Space Business and Applications of Vacuum Technology (우주개발과 진공기술의 응용)

  • Lee, Sang-Hoon;Seo, Hee-Jun;Yoo, Seong-Yeon
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.270-277
    • /
    • 2008
  • Vacuum is any air or gas pressure less than a prevailing pressure in an environmental or, specifically, any pressure lower than the atmospheric pressure and is used by a wide variety of scientists and engineering - including clean environment, thermal insulation, very long mean free path, plasma, space simulation[1]. The space environment is characterized by such a severe condition as high vacuum, and very low and high temperature. Since a satellite will be exposed to such a space environment as soon as it goes into its orbit, space environmental test should be carried out to verify the performance of the satellite on the ground under the space environmental conditions. A general and widely used method to simulate the space environment is using a thermal vacuum chamber which consists of vacuum vessel and thermally controlled shroud. As indicated by name of vacuum chamber, the vacuum technology is applied to design and manufacture of the thermal vacuum chamber. This paper describe the vacuum technology which is applied to space business.

A Study on the Optimum Generation Condition of Ultrasonic Guided Waves for Insulation Pipelines (단열된 배관의 유도초음파 최적 발생조건 선정에 관한 연구)

  • Lee, Dong-Hoon;Cho, Hyun-Joon;Kang, To;Park, Dong-Jun;Kim, Byung-Duk;Huh, Yun-Sil;Lee, Yeon-Jae
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.50-57
    • /
    • 2016
  • Pipeline is one of the most abundant components in petrochemical plant. It plays a critical role in transporting fluids. Some pipelines are thermally insulated by wrapping them with insulating materials to prevent the loss of energy. However, when corrosion begins under insulation, it cannot be easily seen without unwrapping the cover, and thus corrossion should be detected using a non-destructive ways such as ultrasound guided wave. In this paper, the piping where the CUI (Corrosion Under Insulation) which occurs in the insulation parts guided waves effectively the optimum condition which is theoretical for selected guided waves phase velocity dispersion curve and wave-structure. The results of this study are expected to be directly utilized for onsite inspection of pipeline's CUI in many petrochemical plants.

Design and Verification of Housing and Memory Board for Downsizing for Crash Protected Memory Module (충돌보호메모리모듈의 소형화를 위한 하우징 및 메모리 보드 설계와 검증)

  • Kim, Jun-Hyoung;Kim, Jung-Pil;Kim, Jeong-Yeol;Kim, Tae-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.81-88
    • /
    • 2020
  • Flight data recorder is a equipment that records data required for investigation of aircraft accidents and should be developed in compliance with the ED-112A standard. Unlike general data storage device, flight data recorder must be able to recover data after an aircraft accident, requiring a housing and a memory board to protect data in extreme environments. To attain this performance, we designed a housing that can withstand the test by analyzing the physical environment of the impact, shear/tensile, penetration resistance and static crush test of the crash survival test and minimized the size and weight compared to the existing one in consideration of the installation of the aircraft in this paper. Insulation material and thermal block material were applied to endure high and low temperature fire so that the internal temperature does not rise above 150℃ even in 260℃, 10 hour environment. In addition, the memory board is designed to minimize the size and we devise a hoping programming method to prevent continuous data loss of more than 16 seconds. Through this, Crash protected memory module that satisfies ED-112A was completed.

Element Dispersion and Wallrock Alteration from Samgwang Deposit (삼광광상의 모암변질과 원소분산)

  • Yoo, Bong-Chul;Lee, Gil-Jae;Lee, Jong-Kil;Ji, Eun-Kyung;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.42 no.3
    • /
    • pp.177-193
    • /
    • 2009
  • The Samgwang deposit consists of eight massive mesothermal quartz veins that filled NE and NW-striking fractures along fault zones in Precambrian granitic gneiss of the Gyeonggi massif. The mineralogy and paragenesis of the veins allow two separate discrete mineralization episodes(stage I=quartz and calcite stage, stage II-calcite stage) to be recognized, temporally separated by a major faulting event. The ore minerals are contained within quartz and calcite associated with fracturing and healing of veins that occurred during both mineralization episodes. The hydrothermal alteration of stage I is sericitization, chloritization, carbonitization, pyritization, silicification and argillization. Sericitic zone occurs near and at quartz vein and include mainly sericite, quartz, and minor illite, carbonates and chlorite. Chloritic zone occurs far from quartz vein and is composed of mainly chlorite, quartz and minor sericite, carbonates and epidote. Fe/(Fe+Mg) ratios of sericite and chlorite range 0.45 to 0.50(0.48$\pm$0.02) and 0.74 to 0.81(0.77$\pm$0.03), and belong to muscovite-petzite series and brunsvigite, respectiveIy. Calculated $Al_{IV}$-FE/(FE+Mg) diagrams of sericite and chlorite suggest that this can be a reliable indicator of alteration temperature in Au-Ag deposits. Calculated activities of chlorite end member are $a3(Fe_5Al_2Si_3O_{10}(OH)_6$=0.0275${\sim}$0.0413, $a2(Mg_5Al_2Si_3O_{10}(OH)_6$=1.18E-10${\sim}$7.79E-7, $a1(Mg_6Si_4O_{10}(OH)_6$=4.92E-10${\sim}$9.29E-7. It suggest that chlorite from the Samgwang deposit is iron-rich chlorite formed due to decreasing temperature from high temperature(T>450$^{\circ}C$). Calculated ${\alpha}Na^+$, ${\alpha}K^+$, ${\alpha}Ca^{2+}$, ${\alpha}Mg^{2+}$ and pH values during wallrock alteration are 0.0476($400^{\circ}C$), 0.0863($350^{\circ}C$), 0.0154($400^{\circ}C$), 0.0231($350^{\circ}C$), 2.42E-11($400^{\circ}C$), 7.07E-10($350^{\circ}C$), 1.59E-12($400^{\circ}C$), 1.77E-11($350^{\circ}C$), 5.4${\sim}$6.4($400^{\circ}C$), 5.3${\sim}$5.7($350^{\circ}C$)respectively. Gain elements(enrichment elements) during wallrock alteration are $TiO_2$, $Fe_2O_3(T)$,CaO, MnO, MgO, As, Ag, Cu, Zn, Ni, Co, W, V, Br, Cs, Rb, Sc, Bi, Nb, Sb, Se, Sn and Lu. Elements(Ag, As, Zn, Sc, Sb, Rb, S, $CO_2$) represents a potential tools for exploration in mesothermal and epithermal gold-silver deposits.

An Experimental Study on the Hydration Heat of Concrete Using Phosphate based Inorganic Salt (인산계 무기염을 이용한 콘크리트의 수화 발열 특성에 관한 실험적 연구)

  • Jeong, Seok-Man;Kim, Se-Hwan;Yang, Wan-Hee;Kim, Young-Sun;Ki, Jun-Do;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.6
    • /
    • pp.489-495
    • /
    • 2020
  • Whereas the control of the hydration heat in mass concrete has been important as the concrete structures enlarge, many conventional strategies show some limitations in their effectiveness and practicality. Therefore, In this study, as a solution of controling the heat of hydration of mass concrete, a method to reduce the heat of hydration by controlling the hardening of cement was examined. The reduction of the hydration heat by the developed Phosphate Inorganic Salt was basically verified in the insulated boxes filled with binder paste or concrete mixture. That is, the effects of the Phosphate Inorganic Salt on the hydration heat, flow or slump, and compressive strength were analyzed in binary and ternary blended cement which is generally used for low heat. As a result, the internal maximum temperature rise induced by the hydration heat was decreased by 9.5~10.6% and 10.1~11.7% for binder paste and concrete mixed with the Phosphate Inorganic Salt, respectively. Besides, the delay of the time corresponding to the peak temperature was apparently observed, which is beneficial to the emission of the internal hydration heat in real structures. The Phosphate Inorganic Salt that was developed and verified by a series of the aforementioned experiments showed better performance than the existing ones in terms of the control of the hydration heat and other performance. It can be used for the purpose of hydration heat of mass concrete in the future.