• Title/Summary/Keyword: 고에너지 밀링

Search Result 55, Processing Time 0.027 seconds

Insulating Behavior of Sintered AlN Ceramics Prepared by High-Energy Bead Milling of AlN Powder (AlN 분말의 고에너지 밀링에 따른 소결체의 절연 특성)

  • Ryu, Sung-Soo;Lee, Sung-Min
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.444-449
    • /
    • 2017
  • Aluminum nitride (AlN) powder specimens are treated by high-energy bead milling and then sintered at various temperatures. Depending on the solvent and milling time, the oxygen content in the AlN powder varies significantly. When isopropyl alcohol is used, the oxygen content increases with the milling time. In contrast, hexane is very effective at suppressing the oxygen content increase in the AlN powder, although severe particle sedimentation after the milling process is observed in the AlN slurry. With an increase in the milling time, the primary particle size remains nearly constant, but the particle agglomeration is reduced. After spark plasma sintering at $1400^{\circ}C$, the second crystalline phase changes to compounds containing more $Al_2O_3$ when the AlN raw material with an increased milling time is used. When the sintering temperature is decreased from $1750^{\circ}C$ to $1400^{\circ}C$, the DC resistivity increases by approximately two orders of magnitude, which implies that controlling the sintering temperature is a very effective way to improve the DC resistivity of AlN ceramics.

Effect of Process Parameters on Microstructure and Magnetic Properties of Sm-Co Alloy Powder Prepared by High Energy Ball Milling (고에너지 볼밀링된 Sm-Co 합금 분말의 미세조직 및 자성특성에 미치는 공정변수의 영향)

  • Kim, Bo-Sik;Chang, Si-Young
    • Journal of Powder Materials
    • /
    • v.17 no.2
    • /
    • pp.130-135
    • /
    • 2010
  • Sm-16.7wt%Co alloy powders were prepared by high energy ball milling under the conditions of various milling time and the content of process control agent (PCA), and their microstructure and magnetic properties were investigated to establish optimum processing conditions. The initial powders employed showed irregular shape and had a size ranging from 5 to $110\;{\mu}m$. After milling for 5 h, the shape of powders changed to round shape and their mean powder size was approximately $5\;{\mu}m$, which consisted of the agglomerated nano-sized particles with 15 nm in diameter. The coercivity was reduced with increasing the milling time, whereas the saturation magnetization increased. As the content of PCA increased, the powder size minutely decreased to approximately $7\;{\mu}m$ at the PCA content of 10 wt%. The XRD patterns showed that the main diffraction peaks disappeared apparently after milling, indicating the formation of amorphous structure. The measured values of coercivity were almost unchanged with increasing the content of PCA.

Synthesis of Nanocrystalline BaTiO3 Powder by the Combination of High Energy Ball Milling of BaCO3-TiO2 Mixture and Solid-State Reaction (고에너지 볼밀링된 BaCO3와 TiO2 혼합분말의 고상반응에 의한 나노결정 BaTiO3 분말 합성)

  • Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.310-316
    • /
    • 2012
  • Nanocrystalline $BaTiO_3$ powder could be synthesized by solid-state reaction using the mixture which was prepared by a high energy milling process in a bead mill for $BaCO_3$ and nanocrystalline $TiO_2$ powders mixture. Effect of the milling time on the powder characteristic of the synthesized $BaTiO_3$ powder was investigated. Nanocrystalline $BaTiO_3$ with a particle size of 50 nm was obtained at $800^{\circ}C$. High tetragonal $BaTiO_3$ powder with a tetragonality(=c/a) of 1.009 and a specific surface area of $7.6m^2/g$ was acquired after heat-treatment at $950^{\circ}C$ for 2 h. High energy ball milling was effective in decreasing the reaction temperature and increasing the tetragonality.

Effect of Initial Silicon Scrap Size on Powder Refining Process During High Energy Ball Milling (HEBM) (폐실리콘의 고에너지 밀링 과정에서 초기 입자 크기가 분말의 미세화에 미치는 효과)

  • Song, Joon-Woo;Kim, Hyo-Seob;Kim, Sung-Shin;Koo, Jar-Myung;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.242-250
    • /
    • 2010
  • In this research, the optimal manufacturing conditions of fine Si powders from Si scrap were investigated as a function of different initial powder size using the high-energy ball milling equipment, which produces the fine powder by means of an ultra high-energy within a short duration. The morphological change of the powders according to the milling time was observed by Scanning electron microscopy (SEM). With the increasing milling time, the size of Si powder was decreased. In addition, more energy and stress for milling were required with the decreasing initial powder size. The refinement of Si scrap was rapidly carried out at 10min ball milling time. However, the refined powder started to agglomerate at 30 min milling time, while the powder size became uniform at 60 min milling time.

Effect of Grain Size on Nanostructured Fe-20 wt.%Si Alloy Powders Produced by High-energy ball milling (고에너지 볼밀링으로 제조된 나노구조 Fe-20 wt.%Si 합금 분말의 자성 특성에 미치는 결정립 크기의 영향)

  • Kim, Se-Hoon;Lee, Young Jung;Lee, Baek-Hee;Lee, Kyu Hwan;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.12 no.5 s.52
    • /
    • pp.362-368
    • /
    • 2005
  • The structural and magnetic properties of nanostructued Fe-20 ;wt.%Si alloy powders were investigated. Commercial Fe-20 wt.%Si alloy powders (Hoeganaes Co., USA) with 99.9% purities were used to fabricate the nanostructure Fe-Si alloy powders through a high-energy ball milling process. The alloy powders were fabricated at 400 rpm for 50 h, resulting in an average grain size of 16 nm. The nanostructured powder was characterized by fcc $Fe_{3}Si$ and hcp $Fe_{5}Si_3$ phases and exhibited a minimum coercivity of approximately 50 Oe.

Sintering Characteristics of Zircon Nanopowders Fabricated by High Energy Milling Process (고 에너지 밀링 공정으로 제조된 지르콘 나노분말의 소결특성에 관한 연구)

  • Lee, Ju Seong;Kang, Jong Bong
    • Korean Journal of Materials Research
    • /
    • v.26 no.2
    • /
    • pp.95-99
    • /
    • 2016
  • In this study, 5 um sized $ZrSiO_4$ was ground to 1.9 um, 0.3 um, and 0.1 um sized powders by wet high energy milling process, and the sintering characteristics were observed. Pure $ZrSiO_4$ itself can-not be sintered to these levels of theoretical density, but it was possible to sinter $ZrSiO_4$ powder of nano-scale size of, -0.1 um to the theoretical density and to lower the sintering temperature for full density. Also, the decomposition of $ZrSiO_4$ with a size in the micron range resulted in the formation of monoclinic $ZrO_2$; however, in the nano sized range, the decomposition resulted in the tetragonal phase of $ZrO_2$. So, it was possible to improve the sintering characteristics of nano-sized $ZrSiO_4$ powders.

High-temperature corrosion properties of Al2O3 + (Fe2O3, Al, Cr and Si) mixed sintering materials (Al2O3 + (Fe2O3, Al, Cr and Si) 소결 복합재료의 고온 부식 특성)

  • Kim, Min-Jeong;Won, Seong-Bin;Bong, Seong-Jun;Lee, Dong-Bok;Son, In-Jin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.170-171
    • /
    • 2012
  • $Fe_2O_3$, Al, Cr과 Si 분말을 고 에너지 볼 밀링해서 나노분말을 제조한 후 고주파유도 가열 활성 연소합성 장치로 1분 이내의 짧은 시간에 합성 및 소결한 $Al_2O_3+4.65(Fe_{0.43}Cr_{0.17}Al_{0.323}Si_{0.077})$, $Al_2O_3$ + 5.33 ($Fe_{0.375}Cr_{0.11}Al_{0.3}Si_{0.075}$), $Al_2O_3$ + 6.15 ($Fe_{0.325}Cr_{0.155}Al_{0.448}Si_{0.072}$), $Al_2O_3$ + 3.3 ($Fe_{0.6}Cr_{0.3}Al_{0.6}$) 소결체 시편을 $700^{\circ}C$의 온도에서 100시간 동안 공기 중에서 산화 및 $N_2-H_20-H_2S$ 혼합 가스 내에서 황화 부식을 실시하였다. 그 결과 산화 및 황화 부식 후에 ${\alpha}-Al_2O_3$가 표면에 생성되어 보호 피막으로 작용하여 우수한 내식성을 보였다.

  • PDF

Fabrication and Characteristics of Ti-Nb-Mo-CPP Composite Fabricated by High Energy Mechanical Milling and Spark Plasma Sintering (고에너지밀링과 스파크플라즈마소결을 이용한 Ti-Nb-Mo-CPP 생체복합재료의 제조 및 특성)

  • Park, Sang-Hoon;Woo, Kee-Do;Kim, Ji-Young;Kim, Sang-Mi
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.469-475
    • /
    • 2012
  • A high-energy mechanical milling (HEMM) process was introduced to improve sinter-ability, and rapid sintering of spark plasma sintering (SPS) under pressure was used to make ultra fine grain (UFG) of Ti-Nb-Mo-CPP composites, which have bio-attractive elements, for increasing mechanical properties. Ti-Nb-Mo-CPP composites were successfully fabricated by SPS at $1000^{\circ}C$ within 5 minutes under 70 MPa using HEMMed powders. The Vickers hardness of the composites increased with increased milling time and addition of CPP contents. Biocompatibility and corrosion resistance of the Ti-Nb-Mo alloys were improved by addition of CPP, and the Ti-35%Nb-10%Mo-10%CPP alloy had better biocompatibility and corrosion resistance than the Ti-6Al-4V ELI alloy.

Synthesis of SnSb alloys using high energy ball-miiling and its lithium electrochemical behavior (고에너지 볼밀을 이용한 SnSb 합금 분말 제조와 리튬 전기화학적 특성)

  • Kim, Dae Kyung;Lee, Hyukjae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.5
    • /
    • pp.191-198
    • /
    • 2018
  • SnSb alloy powders with excess Sn or Sb are fabricated by the high energy ball-milling of pure Sn and Sb powders with different Sn/Sb molar ratios, and then their material properties and lithium electrochemical performances are investigated. It is revealed by X-ray diffraction that SnSb alloys are successfully synthesized, and the powder size is decreased via ball-milling. Charge-discharge test using a coin-cell shows that the best result, in terms of the cyclability and the capacity after 50 cycles, comes from the electrode composed of Sn : Sb = 4 : 6, i.e. the capacity of $580mAh\;g^{-1}$ after 50 cycles. When the electrode is composed of Sn : Sb = 3 : 7, however, the capacity is noticeably decreased by the restrained Sn reaction with Li-ion. The pure SnSb alloy powders (Sn : Sb = 5 : 5) results in the second best performance. In the case of Sn-rich SnSb alloys, the initial capacity is relatively high, but the capacity is quickly fading after 20 cycles.

Synthesis of Si-SiC-CuO-C Composite from Silicon Sludge as an Anode of Lithium Battery (실리콘 슬러지로부터 리튬전지(電池) 음극용(陰極用) Si-SiC-CuO-C 복합물의 합성(合成))

  • Jeong, Goo-Jin;Jang, Hee-Dong;Lee, Churl-Kyoung
    • Resources Recycling
    • /
    • v.19 no.4
    • /
    • pp.51-57
    • /
    • 2010
  • As a recycling of Si sludge from Si wafer process, a Si-SiC-CuO-C composite material was synthesized and investigated as an anode material for lithium batteries. The Si sludge consisted of Si, SiC, machine oil, and metallic impurities. The oil and metal impurities was removed by organic washing, magnetic separation, and acid washing. The Si-SiC-CuO-C composite from the recovered Si-SiC mixture was prepared by high-energy mechanical milling. According to the electrochemical tests such as charge-discharge capacity and cycling behavior, it showed the improved cycle performance. The SiC and CuO-related phases were presumed to restrain the volume expansion of the anode and Fe, however, should be removed below 10 ppm prior to synthesis of the composite because it caused the capacity loss of the active material itself.