DOI QR코드

DOI QR Code

고에너지 볼밀링된 BaCO3와 TiO2 혼합분말의 고상반응에 의한 나노결정 BaTiO3 분말 합성

Synthesis of Nanocrystalline BaTiO3 Powder by the Combination of High Energy Ball Milling of BaCO3-TiO2 Mixture and Solid-State Reaction

  • 류성수 (한국세라믹기술원 엔지니어링세라믹센터)
  • Ryu, Sung-Soo (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology)
  • 투고 : 2012.06.15
  • 심사 : 2012.08.17
  • 발행 : 2012.08.28

초록

Nanocrystalline $BaTiO_3$ powder could be synthesized by solid-state reaction using the mixture which was prepared by a high energy milling process in a bead mill for $BaCO_3$ and nanocrystalline $TiO_2$ powders mixture. Effect of the milling time on the powder characteristic of the synthesized $BaTiO_3$ powder was investigated. Nanocrystalline $BaTiO_3$ with a particle size of 50 nm was obtained at $800^{\circ}C$. High tetragonal $BaTiO_3$ powder with a tetragonality(=c/a) of 1.009 and a specific surface area of $7.6m^2/g$ was acquired after heat-treatment at $950^{\circ}C$ for 2 h. High energy ball milling was effective in decreasing the reaction temperature and increasing the tetragonality.

키워드

참고문헌

  1. H. Kishi, Y. Mizuno and H. Chazono: Jpn. J. Appl. Phys., 42 (2003) 1. https://doi.org/10.1143/JJAP.42.1
  2. H. Niimi, T. Ishikawa, K. Mihara, Y. Sakabe and M. Kuwabara: Jpn. J. Appl. Phys., 46 (2007) 675. https://doi.org/10.1143/JJAP.46.675
  3. B. I. Lee, X. Wang, S. J. Kwon, H. Maie, R. Kota, J. H. Hwang, J. G. Park and M. Hu: Microelectronic Engineerding, 83 (2006) 463. https://doi.org/10.1016/j.mee.2005.10.058
  4. Y. Sakabe, N. Wada and Y. Hamaji: Journal of the Korean Physical Society, 32 (1998) S260.
  5. K. Uchino, E. Sadanaga and T. Hirose: J. Am. Ceram. Soc., 72 (1989) 1555. https://doi.org/10.1111/j.1151-2916.1989.tb07706.x
  6. S. Wada, H. Yasuno, T. Hoshina, S. M. Nam, H. Kakemoto and T. Tsurumi: Jpn. J. Appl. Phys., 42 (2003) 6188. https://doi.org/10.1143/JJAP.42.6188
  7. D. F. K. Hennings, G. Rosenstein and H. Schreinemacher: J. Eur. Ceram. Soc., 8 (1991) 107. https://doi.org/10.1016/0955-2219(91)90116-H
  8. D. F. K. Hennings, B. S. Schreinemacher and H. Schreinemacher: J. Am. Ceram. Soc., 84 (2001) 2777. https://doi.org/10.1111/j.1151-2916.2001.tb01094.x
  9. S. S. Ryu, S. K. Lee and D. H. Yoon: J. Electroceram., 18 (2007) 243. https://doi.org/10.1007/s10832-007-9066-x
  10. S. S. Ryu and H. T. Kim: Journal of Korean Powder Metallurgy Institute (in Korean), 15 (2008) 302. https://doi.org/10.4150/KPMI.2008.15.4.302
  11. J. Y. Qiu, Y. Hotta, K. Watari, K. Mitsuishi and M. Yamazaki: J. Eur. Ceram. Soc., 26 (2006) 385. https://doi.org/10.1016/j.jeurceramsoc.2005.06.016
  12. C. Ando, R. Yanagawa, H. Chazono, H. Kishi, and M. Senna: J. Mater. Res., 19 (2004), 3592. https://doi.org/10.1557/JMR.2004.0461
  13. D. H. Yoon and B. I. Lee: J. Ceram. Proc. Res., 3 (2002) 41.
  14. G. Yanez, C. Benitez and H. Balmori-Ramirez: Ceram. Int., 26 (2000), 271-277. https://doi.org/10.1016/S0272-8842(99)00053-X
  15. L. B. Kong, J. Ma, H. Huang, R. F. Zhang and W. X. Que: J. Alloys Comp., 337 (2002), 226-230. https://doi.org/10.1016/S0925-8388(01)01925-9
  16. A. Bauger, J. Mutin and J. C. Niepce: J. Mater. Sci., 18 (1983) 3543. https://doi.org/10.1007/BF00540726
  17. J. C. Niepce, G. Thomas, and Solid state Ionics: Solid State Ionics, 43 (1990) 69. https://doi.org/10.1016/0167-2738(90)90472-4
  18. M. T. Buscaglia, M. Bassoli and V. Buscaglia: J. Am. Ceram. Soc., 88 (2005) 2374-2379. https://doi.org/10.1111/j.1551-2916.2005.00451.x
  19. T. Hiramatsu, T. Tamura, N. Wada, H. Tamura and Y. Sakabe: Mat. Sci. Eng. B, 120 (2005) 55. https://doi.org/10.1016/j.mseb.2005.02.054
  20. S. S. Ryu and D. H. Yoon: J. Mater. Sci., 42 (2007) 7093. https://doi.org/10.1007/s10853-007-1537-6
  21. J. O. Hong, S. H. Kim and K. H. Hur: Journal of the Korean Ceramic Society (in Korean), 46 (2009) 161. https://doi.org/10.4191/KCERS.2009.46.2.161
  22. H. Chazono and H. Kishi: Jpn. J. Appl. Phys., 42 (2001) 5624.

피인용 문헌

  1. and Nanosized Graphite Powder Mixtures vol.20, pp.2, 2013, https://doi.org/10.4150/KPMI.2013.20.2.100