• Title/Summary/Keyword: 고압 공기공급원

Search Result 7, Processing Time 0.02 seconds

Design and Manufacture of the air mixing system for supersonic ground test facility (초음속 지상추진시험설비의 공기 혼합시스템 설계 및 제작)

  • Lee, Yagn-Ji;Kang, Sang-Hun;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.40-48
    • /
    • 2008
  • Air mixing system which is composed of air pressure control system, hot pipe system and air mixer, is the facility for mixing hot air($1000^{\circ}C$, 10kg/s) from storage air heater (SAH) and decompressed air($20^{\circ}C$, 15kg/s) from high pressure air supply system. Air pressure control system reduce the pressure of the air, from 32MPa to 3.5 MPa and supply the decompressed air to air mixer. The hot pipe system supply hot air from SAH to air mixer which mix hot with the decompressed air from air pressure control system. Fully mixed air flow rate is 25kg/s and mixed temperature is up to $400^{\circ}C$. So, we can expand the operating envelop of the supersonic ground test facility to low Mach number and low altitude region.

  • PDF

Development of a Test Facility for Cold-air Performance of Small Axial Turbine (소형 축류터빈의 상온 성능시험기 개발)

  • 손창민;차봉준;이대성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1780-1786
    • /
    • 1995
  • The main goal of the present study is to establish the techniques and methodolgies of turbine performance test through evaluating the objective turbine test piece, and checking the reliability of the self-developed test facility by performing a series of turbine tests under ambient temperature condition. A high speed coupling, a lubrication system and a test bed of the test facility were modified through a series of preliminary test in order to reduce the vibration and oil leakage. The flowrate control of the test facility and data acquisition were accomplished by using a software called "Labview" The measurement of shaft horse power and control of rotational speed according to the conditions of turbine rotation were performed by a separate system. The preliminary evaluation of the measured data suggests that the developed test facility and the test technique can be used reliably for the performance test of turbines with the minor improvement.provement.

Preliminary Design of Supersonic Ground Test Facility (초음속 지상 추진 시험설비의 기본설계)

  • 이양지;차봉준;양수석;김형진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.13-19
    • /
    • 2003
  • A supersonic ground test facility to develop Ramjet and SCRamjet(Supersonic Combustion Ramjet) engine should be able to simulate high altitude and high Mach number conditions including air total pressure, oxygen level and specific heat ratio at the combustion chamber entrance. The test facility also should simulate the effect of oblique shock wave caused by the flight vehicle. The test facility developed in this study is supersonic free-jet blowdown type, which consists of high pressure air supply source(maximum pressure=32MPa), air heater(vitiation type), supersonic diffuser, ejector, and test chamber(nozzle exit dimension=200mm$\times$200mm).

  • PDF

Preliminary Design of Supersonic Ground Test Facility (초음속 지상 추진 시험설비의 기본설계기법 연구)

  • 이양지;차봉준;양수석;김형진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.4
    • /
    • pp.53-62
    • /
    • 2003
  • A supersonic ground test facility to develop Ramjet and SCRamjet(Supersonic Combustion Ramjet) engine should be able to simulate high altitude and high Mach number conditions including air total pressure, oxygen level and specific heat ratio at the combustion chamber entrance. The test facility also should simulate the effect of oblique shock wave caused by the flight vehicle. The test facility developed in this study is supersonic free-jet blow down type, which consists of high pressure air supply source(maximum pressure=32MPa), air heater(vitiation type), supersonic diffuser, ejector, and test chamber(nozzle exit dimension=200mm${\times}$200mm).

Starting Characteristics Study of Scramjet Engine Test Facility(SETF) (스크램제트 엔진 시험설비의 시동특성 연구)

  • Lee, Yang-Ji;Kang, Sang-Hun;Oh, Joong-Hwan;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.2
    • /
    • pp.15-22
    • /
    • 2011
  • Unlike most aerodynamic wind-tunnel, Scramjet Engine Test Facility(SETF) of Korea Aerospace Research Institute should simulate enthalpy condition at a flight condition. SETF is a blow-down type, high-enthalpy wind tunnel. To attain a flight condition, a highly stagnated air comes into the test cell through a supersonic nozzle. Also, an air ejector of the SETF is used for simulating altitude conditions of the engine, and facility starting. SETF has a free-jet type test cell and this free-jet type test cell can simulate a boundary layer effect between an airplane and engine using facility nozzle, but it is too difficult to predict the nature of the facility. Therefore it is required to understand the starting characteristics of the facility by experiments. In this paper, the starting characteristics of the SETF and modifications of the ejector are described.

Starting Characteristics Study of Scramjet Engine Test Facility(SETF) (스크램제트 엔진 시험설비의 시동특성 연구)

  • Lee, Yang-Ji;Kang, Sang-Hun;Oh, Joong-Hwan;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.451-458
    • /
    • 2010
  • Unlike most aerodynamic wind-tunnel, Scramjet Engine Test Facility(SETF) of Korea Aerospace Research Institute should simulate enthalpy condition at a flight condition. SETF is a blow-down type, high-enthalpy wind tunnel. To attain a flight condition, a highly stagnated air comes into the test cell through a supersonic nozzle. Also, an air ejector of the SETF is used for simulating altitude conditions of the engine, and facility starting. SETF has a free-jet type test cell and this free-jet type test cell can simulate a boundary layer effect between an airplane and engine using facility nozzle, but it is too difficult to predict the nature of the facility. Therefore it is required to understand the starting characteristics of the facility by experiments. In this paper, the starting characteristics of the SETF and modifications of the ejector are described.

  • PDF

Development of the Scramjet engine Test Facility(SeTF) in Korea Aerospace Research Institute (한국항공우주연구원 스크램제트 엔진 시험설비의 개발)

  • Lee, Yang-Ji;Kang, Sang-Hun;Oh, Joong-Hwan;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.3
    • /
    • pp.69-78
    • /
    • 2010
  • Korea Aerospace Research Institute started on design and development of a hypersonic air-breathing engine test facility from 2000 and completed the test facility installation in July 2009. This facility, designated as Scramjet engine test facility(SeTF), is a blow-down type high enthalpy wind tunnel which has a pressurized air supply system, air heater system, free-jet test chamber, fuel supply system, facility control/measurement system and exhaust system. In this paper, details of the specifications, and configuration of the SeTF are described. For verifying characteristics of the SeTF, wind tunnel tests are now on progress and some of the data are also described.