• Title/Summary/Keyword: 고속 추진(high-speed propulsion)

Search Result 132, Processing Time 0.023 seconds

A Study on Crack Propagation of Solid Propellant by Rapid Pressurization (고속압력하중부가에 의한 고체추진제의 균열진전평가에 관한 연구)

  • Ha, Jae-Seok;Kim, Jae-Hoon;Yang, Ho-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.539-544
    • /
    • 2012
  • An experiment of rapid pressurization-induced crack propagation of solid propellant was conducted by using a windowed test chamber. A pre-cracked specimen of solid propellant is installed in the chamber, and highly compressed nitrogen gas in a accumulator pressurizes the chamber until the chamber pressure reaches set-up pressure to make the chamber depressurization. Pressure-time trace was obtained from the experimental result, and pressurization rate was defined from the trace. In this study, three pressurization rates (64.34, 73.86 and 85.44 MPa/s) are considered, and propagation lengths are measured. Also, a progression of the crack propagation recorded by a high-speed digital camera is presented.

  • PDF

Single Phase PWM Converter For High-Speed Railway Propulsion System Using Discontinuous PWM (불연속 변조 기법을 이용한 고속철도 추진제어장치용 단상 PWM 컨버터)

  • Song, Min-Sup
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.448-457
    • /
    • 2017
  • In this paper, for high speed railway propulsion systems, a single phase PWM Converter using discontinuous PWM (DPWM) was investigated. The conventional PWM Converter uses a low frequency modulation index of less than 10 to reduce switching losses due to high power characteristics, which results in low control frequency bandwidth and requires an additional compensation method. To solve these problems, the DPWM method, which is commonly used in three phase PWM Inverters, was adopted to a single phase PWM Converter. The proposed method was easily implemented using offset voltage techniques. Method can improve the control performance by doubling the frequency modulation index for the same switching loss, and can also bring the same dynamic characteristics among switches. Proposed DPWM method was verified by simulation of 100 kW PWM converter.

Performance analysis of High Speed rolling stock propulsion system (고속철도차량 추진시스템 성능해석)

  • Son, Kyoung-So;Jang, Seok-Myeong;Yun, Cha-Jung
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.461-469
    • /
    • 2010
  • Up to now, High speed train was widely used in France, Germany and Japan. In korea, High speed train was introduced from France train model and operation was made in year 2004. With this high speed operation Know-How, HSR-350 train was developed with our own technology. And now KTX-II which was made by our own technology are running in commercial line. High speed rolling stock system acceleration technology is train propulsion system and this is composed with traction motor, Power transfer system and auxiliary power system. This paper, introduced the performance of the traction propulsion system and other equipment that has been installed at the KTX-II will be secured.

  • PDF

A Study On Design of propulsion and control system for Korean High Speed Train (한국형 고속전철의 추진 및 제어 시스템 설계에 관한 연구)

  • Lee, Won-Ki;Park, Kwang-Bok
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.576-588
    • /
    • 2000
  • The study was carried out about the design of the propulsion and the control systems for Korean High Speed Train. The propulsion system was studied to run the maximum operating speed of 350km/h, The capacity of the main equipment is decided for the train to run tile maximum operating speed of 350km/h with the configuration of 2 power cars, 4 motorized trailers and 14 intermediate trailers. The control system was studied to two parts the supply and the control of high and low voltages used at train, The performance study of control system would be continued to update through system analysis according to propulsion system developing.

  • PDF

The Study of Spray Characteristics for the High Speed Rotating Fuel Injection System (고속회전 연료분무장치의 분무특성연구)

  • Choi, Hyung-Kyung;Choi, Chea-Hong;Choi, Seong-Man;Lee, Dong-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.53-57
    • /
    • 2007
  • 고속회전의 원심력으로 연료를 공급하고 액체연료의 미립화를 초래하는 회전연료분무장치에 대한 분무특성 시험연구를 수행하였다. 특정한 공간상에 존재하는 액적의 특성을 이해하고자 고속회전 연료분사시스템을 설계 제작하였다. 시험장치는 고속으로 회전하는 Spindle, 회전연료노즐, 가압식 물탱크, 아크릴 케이스로 구성하였다. 액적의 크기와 속도를 측정하기 위해 PDPA(Phase Doppler Particle Analyzer)시스템을 사용하였고, ND-Yag Laser를 사용하여 분무를 가시화 하였다. 시험결과 고속회전 연료분사시스템의 분무특성을 확인할 수 있었고, 회전속도는 액적 크기, 속도, 분무각 및 분무패턴 등의 분무특성에 주요한 영향을 미치는 것으로 확인되었다.

  • PDF

A Pseudo 3-Dimensional Structure of the Liquid-propellant Spray Emerging from Nonimpinging-type Injector (비충돌형 인젝터로부터 발생하는 액체추진제 분무의 준3차원 구조)

  • Jung, Hun;Kim, Jeong-Soo;Park, Jeong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.17-24
    • /
    • 2010
  • This study was performed to make a close inquiry into a pseudo 3-dimensional structure of the liquid-propellant spray emerging from nonimpinging-type injector. Spray configuration near the injector exit was captured by a high-speed camera, and then its periodic phenomena (shedding) was observed. Detailed spatial structure of spray was investigated by spray characteristic parameters (velocity, diameter, volume flux, etc.) with the aid of a Dual-mode Phase Doppler Anemometry (DPDA). Experiment was carried out at various locations along the geometric axis of the nozzle orifice and on the plane normal to the spray stream with the injection pressures of 17.2 to 27.6 bar.

Technical Review and Analysis of Ramjet/Scramjet Technology II. Scramjet and Combined Cycle Engine (램제트/스크램제트의 기술동향과 기술분석 II. 스크램제트 및 복합엔진)

  • Sung Hong-Gye;Yoon Hyun-Gull
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.115-128
    • /
    • 2006
  • A technical analysis of current scramjet and combined-cycle engine is presented. Substantial research has been pursued to characterize the operation mechanism of scramjet propulsion, especially in the areas of flame stabilization and system integration, dramatically over the years in support of both military and space access application. Major technology that had significant impact on the maturation of scramjet propulsion technology are dual combustion ramjet, dual mode ramjet, and combined cycle engine to cover a typical wide rage of flight, up to flight Mach number 10. Notable are the fundamental and practical techniques, for instance, scram propulsion itself, thermal relaxation and protection using endothermic fuel and/or CSiC composit materials, and design/manufacture of movable intake and nozzle, to realize high speed propulsion system in near future.

Study on Fuel Lubrication Performance of a High Speed Rolling Element Bearing (소형 고속 구름베어링의 연료윤활 특성 연구)

  • Kim, Ki-Tae;Kim, Sung-Kyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.424-426
    • /
    • 2008
  • A parametric study was carried out to find the fuel lubrication performance of high speed small rolling element bearings. Both MIL-PRF-7808 turbine oil and JP-8 aircraft fuel were used as the lubricant to compare the operational characteristics. 17 mm inner diameter deep groove ball bearing and 20 mm cylindrical roller bearing were used. A high speed bearing test rig was developed and the testing was done with varying applied load, cooling air temperature, lubricant flow rate, and speed. Fuel caused more cage wear than oil for ball bearing with increasing axial load and rotational speed. The bearing temperature using fuel was lower than that using oil, and this seems to be the result of the high cooling capacity of fuel. According to various tests, the fuel lubrication is applicable for the lubrication on the main shaft bearings of expendable small gas turbines.

  • PDF

Development of Underwater Rocket Propulsion System for High-speed Cruises (고속 주행을 위한 수중용 로켓추진기관 개발)

  • Kwon, Minchan;Yoo, Youngjoon;Heo, Junyoung;Hwang, Heeseong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.112-118
    • /
    • 2019
  • The development of an underwater rocket propulsion system was described in this paper. Throttle able liquid propellant and hybrid rocket propulsion systems were selected for underwater propulsion. A subscale liquid rocket combustion chamber and it's portable stand were developed and their applicability was examined. 1.5-ton.f and 1.8-ton.f hybrid rockets were developed for underwater applications. The test results indicated that the 18-ton.f hybrid rocket fully complies to the performance and underwater cruise stability requirements; thus, its development was concluded to be successfully complete.

Propulsion System(Motor-Block) for High-Speed Train using IGCT Device (IGCT 소자를 사용한 고속전철용 추진제어장치(MOTOR-BLOCK))

  • Cho Hyun-Wook;Kim Tae-Yun;Kno Ae-Sook;Jang Kyung-Hyun;Lee Sang-Jun;Choi Jong-Mook
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.665-670
    • /
    • 2005
  • This paper introduces the propulsion system(Motor Block) stabilization test result for Korean High Speed Railway(HSR). The developed propulsion system using high power semiconductor, IGCT(Integrated Gate Commutated Thyristor) consists of two PWM converter and VVVF inverter. In this paper, overall configuration of propulsion system is briefly described and stabilization tests are made to verify the developed propulsion system. The presented test results shows beatless control method of inverter output current at the 200km/h and performance test of BCH.

  • PDF