• Title/Summary/Keyword: 고속모터

Search Result 269, Processing Time 0.025 seconds

Flow Characteristics of Central-Driven Ejector with Design Parameters (중앙구동 이젝터의 설계변수에 따른 유동특성)

  • Park, Sang Kyoo;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.645-651
    • /
    • 2015
  • The objective of this study is to experimentally investigate the effect of design parameter on the mass ratio of a central-driven ejector. The design parameters are the primary nozzle area and distance ratios, diffuser exit-area ratio and mixing-tube length ratio. The experimental setup was an open-loop continuous circulation system which has a movable nozzle ejector, an electric motor-pump, a water tank, a control panel and high-speed camera unit. We calculated the mass ratio using the measured primary and suction-flow rates with the experimental parameter of primary water-flow rate or pressure. The results showed that the mass ratio increased with the primary nozzle distance ratio and mixing tube length ratio, while the mass ratio decreased with the primary nozzle-area ratio and diffuser exit-area ratio.

A Study on Structural Safety and Advanced Efficiency for a Drywell Type Reducer (누유방지형 감속기의 구조적 안전성 및 토크효율 향상에 관한 연구)

  • Oh, Sang-Yeob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1399-1406
    • /
    • 2011
  • The reducer of the mixer is one of the main parts of the processor used for water and wastewater treatment. In this study, an advanced reducer with a drywell structure was developed in order to prevent oil leakage during operation in the field. During the development of the advanced reducer prototype, a mockup, a metal mold, and a cast were made using CAD and a CNC machine. The structural safety of the reducer prototype's lower housing (drywell structure) was checked using the ALGOR commercial FEM analysis code, which yielded a von Mises stress of about 123 N/mm2, which is below the yield stress of 250 N/$mm^2$, and a natural frequency of about 650-700 Hz. In addition, the torque transmission efficiency for the advanced prototype was 95.87%, which is about 8% more than that found in a previous study, 88.45%, and the sound level was below 75 dB. Furthermore, no oil leakage or abnormal sound or vibration occurred. Therefore, an optimally designed advanced reducer prototype has been successfully developed.

Performance Assessment of Linear Motor for High Speed Machining Center (고속 HMC 이송계의 운동 특성 평가)

  • 홍원표;강은구;이석우;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.158-161
    • /
    • 2003
  • Recently, the evolution in production techniques (e.g. high-speed milling), the complex shapes involved in modem production design, and the ever increasing pressure for higher productivity demand a drastic improvement of the dynamic behavior of the machine tool axes used in production machinery. And also machine tools of multi functional and minimized parts are increasingly required as demand of higher accurate in some fields such as electronic and optical components etc. The accuracy and the productivity of machined parts are natural to depend on the linear system of machine tools. The complex workpiece surfaces encountered in present-day products and generated by CAD systems are to be transformed into tool paths for machine tools. The more complex these tool paths and the higher the speed requirements, the higher the acceleration requirements are needed to the machine tool axes and the motion control system, and the more difficult it is to meet the requirements. The traditional indirect drive design for high speed machine tools, which consists of a rotary motor with a ball-screw transmission to the slide, is limited in speed, acceleration, and accuracy. The direct drive design of machine tool axes. which is based on linear motors and which recently appeared on the market. is a viable candidate to meet the ever increasing demands, because of these advantages such as no backlash, less friction, no mechanical limitations on acceleration and velocity and mechanical simplicity. Therefore performance tests were carried out to machine tool axes based on linear motor. Especially, dynamic characteristics were investigated through circular test.

  • PDF

A Study on the Anomaly Prediction System of Drone Using Big Data (빅데이터를 활용한 드론의 이상 예측시스템 연구)

  • Lee, Yang-Kyoo;Hong, Jun-Ki;Hong, Sung-Chan
    • Journal of Internet Computing and Services
    • /
    • v.21 no.2
    • /
    • pp.27-37
    • /
    • 2020
  • Recently, big data is rapidly emerging as a core technology in the 4th industrial revolution. Further, the utilization and the demand of drones are continuously increasing with the development of the 4th industrial revolution. However, as the drones usage increases, the risk of drones falling increases. Drones always have a risk of being able to fall easily even with small problems due to its simple structure. In this paper, in order to predict the risk of drone fall and to prevent the fall, ESC (Electronic Speed Control) is attached integrally with the drone's driving motor and the acceleration sensor is stored to collect the vibration data in real time. By processing and monitoring the data in real time and analyzing the data through big data obtained in such a situation using a Fast Fourier Transform (FFT) algorithm, we proposed a prediction system that minimizes the risk of drone fall by analyzing big data collected from drones.

High-Speed Monitoring Device to Inspect Inkjet Droplets with a Rotating Mirror and Its Measuring Method for Display Applications (잉크젯을 이용한 디스플레이 생산을 위한 회전 미러 방식의 잉크젯 액적 모니터링 장비 및 측정법 연구)

  • Shin, Dong-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.525-532
    • /
    • 2017
  • The development of an inkjet-based manufacturing machine for the production of next-generation displays using organic and quantum-dot light emitting diodes at a low cost has been conducted. To employ inkjet printing in production lines of displays, the development of a high-speed inkjet-monitoring device to verify the reliable droplet jetting status from multiple nozzles is required. In this study, an inkjet monitoring device using a rotatable mirror with rotary and linear ultrasonic motors is developed in place of a conventional, linear reciprocating, motion-based inkjet monitoring device. Its performance is also demonstrated. The measurements of circular patterns with diameters of $10{\mu}m$, $30{\mu}m$, and $50{\mu}m$ are performed with the accuracies of $0.5{\pm}1.0{\mu}m$, $-1.2{\pm}0.3{\mu}m$, and $0.2{\pm}0.5{\mu}m$, respectively, within 17 sec. By optimizing the control program, the takt time can be reduced to as short as 8.6 sec.

Implementation of Speed Limitation Controller Considering Motor Parameter Variation in High Speed Operation (모터 파라미터 산포를 고려한 고속 운전에서의 속도제한 제어기 구현)

  • Kim, Kyung-Hoon;Yun, Chul;Kwon, Woo-Hyen
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1584-1590
    • /
    • 2017
  • This paper presents a implementation method of reliable speed limitation controller considering motor parameter variation in high speed operation. In spinning process of drum washing machine, speed increase has to be limited when unallowable imbalance mass is detected. Otherwise, severe noise and vibration can happen because noise and vibration are proportional to imbalance mass. To detect imbalance mass, d-axis current magnitude is used. However, we have to compensate for back-emf and power supply variation by means of detecting them because d-axis current is affected by both of them. On the other hand, we have to carefully estimate back-emf because back-emf is affected by stator resistance variation and inverter voltage error. Stator resistance variation can happen by manufacturing process for mass production or temperature variation in running. And there are inverter voltage errors between command voltage from micro-computer to inverter and real voltage from inverter to motor because of rising and falling time delay and turn-on resistance of power semiconductor switch. To solve this problem, we propose 2-step align current injection method which is to inject step-wise current right before starting. By this method, we can simply obtain stator resistance by ratio of voltage without inverter voltage error and current, and we can measure inverter voltage error. So we can obtain more exact model current, and then by simple calculation with compensation gain, we can estimate more accurate motor back-emf. We show that this method works well. It is verified through experiments.

Implementation of a Communication Algorithm between Actuator Controller and Manufacturing System (제조 시스템과 제어기 사이의 통신알고리즘 구현에 관한 연구)

  • Jeong, Hwa-Young;Hong, Bong-Hwa;Kim, Eun-Won
    • 전자공학회논문지 IE
    • /
    • v.46 no.2
    • /
    • pp.46-52
    • /
    • 2009
  • The manufacturing system was used to communicate between controller and GUI system by RS232C. The controller is deal with processing the equipments such as cylinders, motors, sensors, and so on. The Gill system received the signal from actuator controller by direct communication ways, RS232C, and presented the data to user to analyze the all of status for manufacturing system. In this point, it is important that communication use the RS232C. The way is helpful to be able to reduce cost, have simple structure, and easily maintain the stable communication status. Otherwise, the way has some problem to loss signal or data under the high speed communication. So it needs to complement the communication process to without loss data. In this research, we made the communication algorithm and implement the process to reduce losing data when it send or receive the signal using RS232C between controller and manufacturing system.

A Study on Erosion Structure Properties for Thermal Insulation Materials on Carbon-Carbon Composites and Graphite Nozzle Throat (C-C 복합재료와 Graphite 노즐목 내열재의 침식조직 특성에 대한 연구)

  • Kim, Young In;Lee, Soo Yong
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.42-49
    • /
    • 2017
  • The solid rocket motor(SRM) consists of a motor case, igniter, propellants, nozzle, insulation, controller, and driving device. The liquid rocket propulsion systems(LRPSs) cools the nozzle by the fuel and oxidizer but SRM does not cool the nozzle. The nozzle of SRM is high temperature condition and high velocity condition so occurs the erosion by combustion gas. This erosion occurs the change of nozzle throat and reduces thrust performance of rocket. The material of Rocket nozzle is minimization of erosion and insulation effect and endure the shear force, high temperature and high pressure. The purpose of this study is to investigate the erosion characteristics of solid rocket nozzles by each combustion time. Through the structure inspection of Graphite and C-C composite, identify the characteristics of the microstructure before and after erosion.

The Development of a Precision BLDC Servo Position Controller for the Composite Smoke Bomb Rotational Driving System (복합연막탄 선회구동장치를 위한 정밀 BLDC 서보 위치 제어기 개발)

  • Koo, Bon-Min;Park, Moo-Yurl;Choi, Jung-Keyung;Choi, Sung-Jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.951-954
    • /
    • 2005
  • This paper presents a study on the accuracy position Controller design for the Composite Smoke Bomb Rotational driving system using a BLDC servo motor. Function of Smoke Bomb is blind in the enermy's sight so that need to high response. The BLDC servo motor controller was designed with DSP(TMS320VC33), IGBT(Insulated Gate Bipolar. Transistor), IGBT gate driver and CPLD(EPM7128). This paper implements those control with vector control and MIN-MAX PWM. Vector control requires information about rotor positions, a resolver should be used to achieve that. The main controller is implemented with a TMS320VC33 high performance floating-point DSP(Digital Signal Process) and PWM Generator is embodied using EPM7128.

  • PDF

Study on Analysis of Operating Characteristics of Motor Block While KTX is Moving at Neutral Section of Kyung-Bu High Speed Line (경부고속선 절연구간에서 KTX 운행중 모터블럭의 동작특성 분석)

  • Choi, Chang Hyun;Lho, Young Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.10
    • /
    • pp.1523-1527
    • /
    • 2015
  • Traction power is supplied by three-phase alternating current of 154 kV power grid and electric trains are operated on single phase feeding system. It becomes important to use all the three phases equally and convert them into two-phase electric power (90 degree phase rotation) for traction supply. This is achieved by special transformer from the adjacent traction substation which is separated by a neutral section. Neutral section locations are in front of the substation and between the two substations. The first stage of the Seoul-Busan high-speed railway, design curve radius is larger than 7,000 m and the greatest slope is 25‰. The railway track conditions are evaluated as good enough to install a neutral section at the first stage, but a few factors of coasting operation of the train should be considered at the second stage of Seoul-Busan high-speed railway. The neutral section was located at Kim-cheon substation, which made some neutral section problems produced by the operating train, and the neutral section was moved about 1.5 km to the south toward Dong Dae-gu station due to the track operation condition. Some of the trains which stopped at the existing Kim-cheon Gu-mi station produced another motor block failure after moving the neutral section. In this paper, power quality, system performance and track condition, etc. are suggested to solve the problems.