DOI QR코드

DOI QR Code

A Study on Erosion Structure Properties for Thermal Insulation Materials on Carbon-Carbon Composites and Graphite Nozzle Throat

C-C 복합재료와 Graphite 노즐목 내열재의 침식조직 특성에 대한 연구

  • Kim, Young In (School of Aerospace & Mechanical Engineering, Korea Aerospace University(Hanseo University)) ;
  • Lee, Soo Yong (School of Aerospace & Mechanical Engineering, Korea Aerospace University)
  • 김영인 (한국항공대학교 항공우주 및 기계공학부(한서대학교)) ;
  • 이수용 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2017.09.27
  • Accepted : 2017.10.26
  • Published : 2017.10.31

Abstract

The solid rocket motor(SRM) consists of a motor case, igniter, propellants, nozzle, insulation, controller, and driving device. The liquid rocket propulsion systems(LRPSs) cools the nozzle by the fuel and oxidizer but SRM does not cool the nozzle. The nozzle of SRM is high temperature condition and high velocity condition so occurs the erosion by combustion gas. This erosion occurs the change of nozzle throat and reduces thrust performance of rocket. The material of Rocket nozzle is minimization of erosion and insulation effect and endure the shear force, high temperature and high pressure. The purpose of this study is to investigate the erosion characteristics of solid rocket nozzles by each combustion time. Through the structure inspection of Graphite and C-C composite, identify the characteristics of the microstructure before and after erosion.

고체추진 로켓(SRM)은 모터케이스, 점화기, 추진제, 노즐, 절연체, 제어 및 구동장치 등으로 구성되어 있으며 액체로켓과 다르게 노즐을 냉각시킬 수 없어 고온 및 고속의 연소가스에 의해 침식(Erosion)이 발생한다. 이러한 침식현상은 노즐목의 형상 변화를 일으키며 로켓의 추력 성능을 감소시킨다. 로켓 노즐의 재질은 침식현상을 최소화하고 열을 차단시키는 효과가 있어야 하며 용융 상태에서 소실되지 않고 전단력이나 압력에 견딜 수 있어야 한다. 본 연구는 실험을 통하여 고체로켓 노즐의 재질에 대하여 연소시간별 침식특성을 파악한다. 그리고 Graphite와 C-C 복합재료의 각 재질별 조직검사를 통하여 침식 후의 미세특징을 비교 분석하여 침식특성을 규명한다.

Keywords

References

  1. Hoon Jung, Soo Yong Lee and Ja Ye Koo, "Structural and Shape Design of Solid Rocket Nozzles," The Korean Society for Aeronautical and Space Sciences, vol 24, no. 4, pp. 84-91, 1996.
  2. Ronald Humble, Ronald W. Humble, Gary N. Henry and Wiley J. Larson, Space propulsion analysis and design, McGraw-Hill, pp. 318, 1995.
  3. Young In Kim and Soo Yong Lee, "The Research Trends of Ablation Behavior on Composite Rocket Nozzles," 2014 SASE Spring Conference, 2014.
  4. K. K. KUO and S. T. KESWANI, "A Comprehensive Theoretical Model for Carbon-Carbon Composite Nozzle Recession," Journal of Combustion Science and Technology, vol. 42, pp. 145-164, 1985. https://doi.org/10.1080/00102208508960374
  5. Daniele Bianchi and Francesco Nasuti, "Thermochemical Erosion Analysis of Carbon-Carbon Nozzles in Solid-Propellant Rocket Motors," 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2010.
  6. Hee Cheol and Ham, "A Study on the Thermal Response Characteristics of Carbon/Carbon Composites for Nozzle Throat Insert," Journal of the Korean Society of Propulsion Engineers, vol. 10, no. 1, pp. 30-37, 2006.
  7. Jungsoo So, Gyusung Do, Yunje Jang, Seungho Song, Jungsoo Han and Heejang Moon, "A study on Nozzle Structure Analysis about thermal stress effect Associated with Nozzle Thickness in Rocket," Journal of The Society for Aerospace System Engineering, vol. 2, no.2, pp. 28-34, 2008.
  8. V. R. Gowariker, "Mechanical and chemical contribution to the erosion rates of graphite throats in rocket Motor Nozzle," J. spacecraft, vol. 3, no. 10, pp. 1490-1494, 1966. https://doi.org/10.2514/3.28682
  9. S.T. KESWANI, E. ANDIROGLU, J.D. CAMPBELL and K.K. KUO, "Recession behavior of graphitic nozzles in simulated rocket motors," 19th Joint Propulsion Conference, 1983.
  10. K.K. Kuo and R. Acharya, Applications of Turbulent and Multi-Phase Combustion, Wiley, New Jersey, pp. 292, 2012.
  11. R. Acharya and K.K. Kuo, "Effect of Pressure and Propellant Composition on Graphite Rocket Nozzle Erosion Rate," Journal of Propulsion and Power, Vol. 23, No. 6, pp. 1242-1254, 2007. https://doi.org/10.2514/1.24011