• Title/Summary/Keyword: 고선량직선성

Search Result 8, Processing Time 0.029 seconds

Development of Phantom and Comparison Analysis for Performance Characteristics of MOSFET Dosimeter (MOSFET 선량계 특성분석을 위한 팬톰 개발 및 특성 비교)

  • Chung, Jin-Beom;Lee, Jeong-Woo;Kim, Yon-Lae;Lee, Doo-Hyun;Choi, Kyoung-Sik;Kim, Jae-Sung;Kim, In-Ah;Hong, Se-Mie;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.18 no.1
    • /
    • pp.48-54
    • /
    • 2007
  • This study is to develope a phantom for MOSFET (Metal Oxide Semiconductors Field Effect Transistors) dosimetry and compare the dosimetric properties of standard MOSFET and microMOSFET with the phantom. In this study, the developed phantom have two shape: one is the shape of semi-sphere with 10cm diameters and the other one is the flat slab of $30{\times}30cm$with 1 cm thickness. The slab phantom was used for calibration and characterization measurements of reproducibility, linearity and dose rate dependency. The semi-sphere phantom was used for angular and directional dependence on the types of MOSFETs. The measurements were conducted under $10{\times}10cm^2$ fields at 100cm SSD with 6MV photon of Clinac (21EX, Varian, USA). For calibration and reproducibility, five standard MOSFETS and microMOSFETs were repeatedly Irradiated by 200cGy five times. The average calibration factor was a range of $1.09{\pm}0.01{\sim}1.12{\pm}0.02mV/cGy$ for standard MOSFETS and $2.81{\pm}0.03{\sim}2.85{\pm}0.04 mV/cGy$ for microMOSFETs. The response of reproducibility in the two types of MOSFETS was found to be maximum 2% variation. Dose linearity was evaluated In the range of 5 to 600 cGy and showed good linear response with $R^2$ value of 0.997 and 0.999. The dose rate dependence of standard MOSFET and microMOSFET was within 1% for 200 cGy from 100 to 500MU/min. For linearity, reproducibility and calibration factor, two types of MOSFETS showed similar results. On the other hand, the standard MOSFET and microMOSFET were found to be remarkable difference in angular and directional dependence. The measured angular dependence of standard MOSFET and microMOSFET was also found to be the variation of 13%, 10% and standard deviation of ${\pm}4.4%,\;{\pm}2.1%$. The directional dependence was found to be the variation of 5%, 2% and standard deviation of ${\pm}2.1%,\;{\pm}1.5%$. Therefore, dose verification of radiation therapy used multidirectional X-ray beam treatments allows for better the use of microMOSFET which has a reduced angular and directional dependence than that of standard MOSFET.

  • PDF

A Study of the Thermoluminescent Properties of Korean Natural Quartz for Possible Use in Gamma-ray Dosimetry

  • Lee, Hee-Yong;Kim, Hi-Gyu;Lee, Chul
    • Nuclear Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.229-239
    • /
    • 1970
  • Various thermoluminescent properties of Korean natural quartz for possible use in ${\gamma}$-ray dosimetry has been studied. If the heating is exactly linear, ${\gamma}$-irradiated radiation sensitive (type 1) $\alpha$-quartz can yield a glow curve of single peak, hence glow peak height could be taken as a ${\gamma}$-dose for its dosimetry. Quartz crystal dosimeter exhibited the linearity of thermoluminescent intensity in the range from about 2$\times$10$^{3}$R to 2$\times$10$^{6}$ R, and also had an advantage of low fading because of the high peak temperature (300$\pm$4$0^{\circ}C$). The pulverized quartz sample having the grain size of 0.3<ø<0.9mm showed the linearity of T. L. intensity in the range from 50R to 2$\times$10$^3$R. Therapeutic application of the pulverized sample on the correct measurement of the absorbed dose in a body region of a cancer patient seems to be successful.

  • PDF

Preliminary Test of 3D Printed Plastic Scintillators for Proton Beam (3D 프린팅 플라스틱 섬광체의 양성자 빔에 대한 적용)

  • Sung-Hwan, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.681-686
    • /
    • 2022
  • In this study, a scintillation resin for 3D printing was fabricated with 1.0 wt% of PPO organic scintillator, 5.0 wt% of MMA, and commercial acrylic resin. Using the scintillation resin, 3D-shaped plastic scintillator radiation sensors were successfully fabricated quickly and inexpensively with a commercial 3D DLP printer. The 3D printed plastic scintillator has a good dose-output linearity of R-square 0.998 was obtained in the range of 1 to 10 nA of beam current of the 45 MeV proton beam. The developed 3D plastic scintillator has low light output, so there is a limit to its use in low-dose-rate gamma-ray or X-ray dosimetry. However, it was confirmed that the tissue equivalent material could be usefully used for measuring high energy or high dose rates radiation, such as proton beams and ultra-high dose rate beams.

Dose Distribution of 100 MeV Proton Beams in KOMAC by using Liquid Organic Scintillator (액체 섬광체를 이용한 100 MeV 양성자 빔의 선량 분포 평가)

  • Kim, Sunghwan
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.621-626
    • /
    • 2017
  • In this paper, an optical dosimetric system for radiation dose measurement is developed and characterized for 100 MeV proton beams in KOMAC(Korea Multi-Purpose Accelerator Complex). The system consists of 10 wt% Ultima GoldTM liquid organic scintillator in the ethanol, a camera lens(50 mm / f1.8), and a high sensitivity CMOS(complementary metal-oxide-semiconductor) camera (ASI120MM, ZWO Co.). The FOV(field of view) of the system is designed to be 150 mm at a distance of 2 m. This system showed sufficient linearity in the range of 1~40 Gy for the 100 MeV proton beams in KOMAC. We also successfully got the percentage depth dose and the isodose curves of the 100 MeV proton beams from the captured images. Because the solvent is not a human tissue equivalent material, we can not directly measure the absorbed dose of the human body. Through this study, we have established the optical dosimetric procedure and propose a new volume dose assessment method.

A Study on the Diffusion of Gaseous Radioactive Effluents Based on the Statistical Method (통계적 방법을 이용한 방사성 물질의 대기 확산 평가)

  • Na, Man-Gyun;Lee, Goung-Jin
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.4
    • /
    • pp.251-257
    • /
    • 1998
  • A diffusion model of radioactive gaseous effluents is improved to apply for domestic nuclear power plants. Up to now, XOQDOQ computer code package developed by U. S NRC has been used for the assessment of radioactive plume dispersion by normal operation of domestic nuclear power plants. XOQDOQ adopts the straight-line Gaussian plume model which was basically derived for the plane terrain. However, since there are so many mountains in Korea, the several shortcomings of XOQDOQ are improved to consider the complex terrain effects. In this work, wind direction change is considered by modifying the wind rose frequency using meteorological data of the local weather stations. In addition, an effective height correction model, a plume reduction model due to plume penetration into mountain, and a wet deposition model are adopted for more realistic assessments. The proposed methodology is implemented in Yongkwang nuclear power plants, and can be used for other domestic nuclear power plants.

  • PDF

A Study on the Output Characteristics Comparison of High Frequency Resonant Inverter Type X-ray Generators in Short Exposure Time (고주파 공진형 인버터식 X-선 장치의 단시간 출력특성 비교 연구)

  • 정수복;이성길;임홍우;백형래
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.66-72
    • /
    • 1999
  • This paper deals with the output characteristics of resonant PWM inverter type X-ray generators connected to different DC power units i.e. a single phase full bridge rectifier, a three phase full bridge rectifier and a power storage unit(PSU). The quality of X-ray beam depends on the pulsating waveforms of DC voltage supplied to the X-ray tube. In a X-ray generator, the waveform of DC output voltage can be affected from affected from harmonic distortion of DC input power. When a tube voltage waveform is distorted, the property of X-ray beam such as reproducibility, linearity and dose can be reduced. Therefore, we compared DC output waveforms and dose with three type of DC power units and show the experimental results in this paper.

A study on the accuracy of source position in HDR brachytherapy according to the curvature of Universal applicator transfer tube and applicator type (원격 후 장전치료기를 사용한 고선량률 근접치료시 기구의 형태와 선원 전달 도관의 곡률 변화에 따른 선원위치 정확성에 관한 고찰)

  • Shin, Hyeon Kyung;Lee, Sang Kyoo;Kim, Joo Ho;Cho, Jeong Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.2
    • /
    • pp.123-129
    • /
    • 2015
  • Purpose : The goal of this study was to verify and analyze the source position according to the curvature of the universal applicator and 4 different angle applicators when using RALS(Remote After Loading System). Materials and Methods : An interval of 1 cm and 15 second dwell times in each source position were applied for plan. To verify the accuracy of source position, we narrowed the distance between MultiSource container and GAFCHROMIC$^{(R)}$ EBT3 film by 5 cm, 10 cm, 20 cm so that the universal applicator transfer tube had some curvature. Also 4 applicators(Intrauterine tube: $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, Ovoid tube: $65^{\circ}$) were used in the same condition. The differences between desired and actual source position were measured by using Image J. Results : In case of using 4 different angles of applicator with the straight universal applicator transfer tube, the average error was the lowest for $0^{\circ}$ applicator, greatest for $65^{\circ}$ applicator. However, All average errors were within ${\pm}2mm$ recommended in TG-56. When MultiSource container was moved 5 cm, 10 cm, 20 cm towards the EBT3 film, the average errors were beyond ${\pm}2mm$. The first dwell position was relatively located in accuracy, while the second and third dwells were displaced by an increasing magnitude with increasing curvature of the transfer tube. Furthermore, with increasing the angle of applicators, the error of all other dwell positioning was increased. Conclusion : The results of this study showed that both the curvature of universal applicator transfer tube and the angle of applicators affect the source dwell position. It is recommended that using straight universal applicator transfer tubes is followed in all cases, in order to avoid deviations in the delivered source dwell position. Also, It is advisable to verify the actual dwell position, using video camera quality control tool prior to all treatments.

  • PDF