DOI QR코드

DOI QR Code

Dose Distribution of 100 MeV Proton Beams in KOMAC by using Liquid Organic Scintillator

액체 섬광체를 이용한 100 MeV 양성자 빔의 선량 분포 평가

  • Kim, Sunghwan (Department of Radiological Science, Cheongju University)
  • Received : 2017.11.02
  • Accepted : 2017.12.10
  • Published : 2017.12.31

Abstract

In this paper, an optical dosimetric system for radiation dose measurement is developed and characterized for 100 MeV proton beams in KOMAC(Korea Multi-Purpose Accelerator Complex). The system consists of 10 wt% Ultima GoldTM liquid organic scintillator in the ethanol, a camera lens(50 mm / f1.8), and a high sensitivity CMOS(complementary metal-oxide-semiconductor) camera (ASI120MM, ZWO Co.). The FOV(field of view) of the system is designed to be 150 mm at a distance of 2 m. This system showed sufficient linearity in the range of 1~40 Gy for the 100 MeV proton beams in KOMAC. We also successfully got the percentage depth dose and the isodose curves of the 100 MeV proton beams from the captured images. Because the solvent is not a human tissue equivalent material, we can not directly measure the absorbed dose of the human body. Through this study, we have established the optical dosimetric procedure and propose a new volume dose assessment method.

본 논문에서는 방사선치료 시 용적 선량 평가에 응용할 수 있는 광 도시메트리 시스템을 구축하고 100 MeV 고선속 양성자 빔에 대한 특성 평가를 수행하였다. 광 도시메트리 시스템은 액체 유기 섬광체와 카메라 렌즈, 고감도 저잡음 화상(complementary metal-oxide-semiconductor; CMOS) 카메라로 구성되며, 2 m 거리에 영상의 화각(field of view; FOV)이 15 cm가 되도록 설계 및 제작하였다. 구축된 광 도시메트리 시스템은 100 MeV 양성자 빔에 대하여 1~40 Gy 선량 범위에서 선량-출력의 직선성을 확인하였으며, 심부선량백분율 데이터와 등선량 곡선을 획득하였다. 본 연구에서는 용매의 인체조직등가성에 제한점이 있지만 광 도시메트리 절차를 확립하였으며, 새로운 용적 선량 평가법의 제안으로 그 의미가 있다.

Keywords

References

  1. Okumus D, Sarihan S, M.D.Gozcu S, Sigirli D. The relationship between dosimetric factors, side effects, and survival in patients with non-small cell lung cancer treated with definitive radiotherapy. Med Dosim. 2017; 42(3): 169-176. https://doi.org/10.1016/j.meddos.2017.02.002
  2. Mazonakis M, Damilakis J. Estimation and reduction of the radiation dose to the fetus from external-beam radiotherapy. Phys Med. 2017; In press.
  3. Shirai K, Fukata K, Adachi A, Saitoh J, Nakano T. Dose-volume histogram analysis of brain stem necrosis in head and neck tumors treated using carbon-ion radiotherapy. Radiother Oncol. 2017; 125(1):36-40. https://doi.org/10.1016/j.radonc.2017.08.014
  4. Lee G, Dinniwell R, Liu FF, Fyles A, Han K, Conrad T, et. al. Building a New Model of Care for Rapid Breast Radiotherapy Treatment Planning: Evaluation of the Advanced Practice Radiation Therapist in Cavity Delineation. Clin Oncol. 2016; 28(12): 184-191. https://doi.org/10.1016/j.clon.2016.07.013
  5. Bridge P, Fielding A, Rowntree P, Pullar A. Qualitative Evaluation of a Novel 3D Volumetric Radiotherapy Segmentation Tool. J Med Imag Rad Sci. 2017; 48(2): 178-183. https://doi.org/10.1016/j.jmir.2016.10.013
  6. Bijl E, Oers R, Olaciregui-Ruiz I, Mans A. Comparison of gamma- and DVH-based in vivo dosimetric plan evaluation for pelvic VMAT treatments. Radiother Oncol. 2017; In press.
  7. Yaparpalvi R, Fontenla D, Tyerech S, Boselli L, Beitler J. Parotid Gland Tumors: A Comparison of Postoperative Radiotherapy Techniques Using Three Dimensional (3D) Dose Distributions and Dose-Volume Histograms (DVHs). Int J Radiat Oncol Biol Phys. 1998; 40(1): 43-9. https://doi.org/10.1016/S0360-3016(97)00484-7
  8. Silveira MA, Pavoni JF, Baffa O. Three-dimensional quality assurance of IMRT prostate. Phys Med. 2017; 34: 1-6. https://doi.org/10.1016/j.ejmp.2016.12.007
  9. Tridimensional dosimetry for prostate IMRT treatments using MAGIC-f gel by MRI. Radiat Meas. 2014: 71: 369-373. https://doi.org/10.1016/j.radmeas.2014.07.011
  10. Kirov AS, Piao JZ, Mathur NK, Miller TR, Devic S, et. al. The three-dimensional scintillation dosimetry method: test for a Ru-106 eye plaque applicator. Phys Med Biol. 2005; 50(13): 3063-81. https://doi.org/10.1088/0031-9155/50/13/007
  11. Beddar S, Archambault L, Sahoo N, Poenisch F, Chen GT, Gillin MT, et. al. Exploration of the potential of liquid scintillators for real-time 3D dosimetry of intensity modulated proton beams. Med Phys. 2009; 36(5): 1736-43. https://doi.org/10.1118/1.3117583
  12. Fukushima Y, Hamada M, Nishio T, Maruyama K. Development of an easy-to-handle range measurement tool using a plastic scintillator for proton beam therapy. Phys Med Biol. 2006; 51: 5927-36. https://doi.org/10.1088/0031-9155/51/22/014
  13. Ponisch F, Archambault L, Briere TM, Sahoo N, Mohan R, Beddar S, et. al. Liquid scintillator for 2D dosimetry for high-energy photon beams. Med Phys. 2009; 36: 1478-85. https://doi.org/10.1118/1.3106390
  14. Specification of ASI120MC-S CMOS camera. Available from: https://astronomy-imaging-camera.com/products/usb-3-0/asi120mc-s/
  15. Interaction of ions with matter: SRIM (The Stopping and Range of Ions in Matter). Available from: http://www.srim.org/
  16. Glaser AK, Andreozzi JM, Davis SC, Zhang R, Pogue BW, Fox CJ4, et al. Video-rate optical dosimetry and dynamic visualization of IMRT and VMAT treatment plans in water using Cherenkov radiation. Med Phys. 2014; 41(6): 062102-1 9. https://doi.org/10.1118/1.4875704
  17. Beddar S. Real-time volumetric scintillation dosimetry. J Phys Conf Ser. 2015; 573: 1-7.