• Title/Summary/Keyword: 고분자전해질형 연료전지

Search Result 90, Processing Time 0.027 seconds

Development of Conductive-Corrosion Resistive Stainless Steel for PEMFC Bipolar plate (고분자전해질 연료전지용 스테인리스 분리판 고내식/고전도성 표면개질 기술 개발)

  • Han, Jun-Hui;Jeong, Yeon-Su;Jeon, Yu-Taek
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.278-278
    • /
    • 2014
  • 저가형 고전도성/고내식 연료전지용 금속분리판 제작을 위해 다양한 조성 및 온도에서 표면개질을 시행하였다. 본 연구에 의해 제작된 시편의 표면분석 결과 Fe 선택적 용출 및 Cr-rich layer 형성이 이루어졌음을 확인하였으며, 성능 평가 결과 2015 DOE 목표를 만족시키는 것을 확인하였다.

  • PDF

Numerical Study of Land/Channel Flow-field Optimization in Polymer Electrolyte Fuel Cells (PEFCs) (I) -The Effects of Land/Channel Flow-field on Current Density and HFR Distributions- (고분자전해질형연료전지의 가스 채널 최적화를 위한수치적연구(I) -가스 채널 치수가 전류밀도와 HFR 분포에 미치는영향성-)

  • Ju, Hyun-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.683-694
    • /
    • 2008
  • The performance and durability of Polymer Electrolyte Fuel Cells (PEFCs) are strongly influenced by the uniformity of current density, temperature, species distributions inside a cell In order to obtain uniform distributions in them, the optimal design of flowfield must be a key factor. In this paper, the numerical study of land/channel flowfield optimizations is performed, using a multi-dimensional, multi-phase, non-isothermal PEFC model. Numerical simulations reveal more uniform current density and HFR(High Frequency Resistance) distributions and thus better PEFC performance with narrower land/channel width where the less severe oxygen depletion effect near the land region and more uniform contact resistance variation along the in-plane direction are achieved. The present study elucidates detailed effects of land/channel width and assist in identifying optimal flow-field design strategies for the operation of PEFCs.

Development of a High Efficiency Polymer Electrolyte Membrane Fuel Cell Stack under Pressurized Operating Conditions (고효율 가압형 고분자전해질 연료전지 셀스택 개발)

  • Han, In-Su;Seo, Hakyu;Jung, Jeehoon;Kim, Minsung;Shin, Hyunkhil;Hur, Taeuk;Cho, Sungbaek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.125.1-125.1
    • /
    • 2010
  • A high efficiency polymer electrolyte membrane (PEM) fuel cell stack was developed for pressurized pure hydrogen and oxygen supplying conditions. The design objective for the cell stack was to maximize the electric efficiency and to minimize exhaust-gas emissions from it simultaneously. To achieve this objective, the cell stack was designed to use pure hydrogen and oxygen as fuel and oxidant, respectively, and to be operated under high gas inlet pressures and in a stage-wise dead-end operation mode. Major components constituting the cell stack, such as membrane electrode assembly, bipolar-plate, and gasket, have been developed to meet a target durability even in severe operating conditions: high gas inlet pressures and usage of pure oxygen. A high-power fuel cell stack was assembled using these components to verify the performance. The cell stack showed a good performance in terms of the efficiency and maximum power output.

  • PDF

Analysis of Part Load Performance of a Hybrid PEMFC System (하이브리드형 고분자전해질 연료전지 시스템의 부분부하 성능해석)

  • Ji, Seung-Won;You, Byung-June;Kim, Tong-Seop;Sohn, Jeong-Lak;Lee, Young-Duk;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.11
    • /
    • pp.849-855
    • /
    • 2008
  • The paper addresses modeling and analysis of the part load performance of a hybrid fuel cell system integrating a polymer electrolyte membrane fuel cell(PEMFC) and a gas turbine(GT). The system is a pressurized one where the working pressure of the PEMFC is higher than the ambient pressure. In addition to the two major components, the system also includes auxiliary parts such as a steam reformer, a humidifier, and afterburner and so on. Based on design analysis, component off-design models are incorporated in the analysis program and part load operation is simulated. The mode for the part load operation of the PEMFC/GT hybrid system is a variable rotational speed operation. The operating characteristics and variations in the system efficiency and component performance parameters at part load are analyzed.

A Two-Dimensional Analysis of Heat Transfer and Flow in Proton Exchange Membrane Fuel Cells (고분자 전해질 연료전지의 2차원 열전달 및 유동 해석)

  • Jeong, Hye-Mi;Yang, Ji-Hye;Koo, Ja-Ye;Park, Jung-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.995-1000
    • /
    • 2001
  • Distributions of the parameters in proton exchange membrane fuel cell (PEMFC) has been analyzed numerically under steady-state and isothermal conditions. The distributions of the crucial parameters (e.g., temperature and pressure) in a PEMFC have a major impact on its safe and efficient operation. This paper predicts the performance of the model electrode plates by calculating the pressure and temperature distributions of working fluid. The calculated results of pressure and temperature at exit condition shows good agreement to experiments and gives details of flow pattern inside of electrode plates.

  • PDF

A Study of Temperature Distribution and Flooding Phenomena of Cathode now Channel in a PEM Unit Fuel Cell (고분자전해질형 단위 연료전지의 공기극 유로 채널 내 온도 분포와 플러딩 현상에 관한 연구)

  • Kim, Han-Sang;Ha, Tae-Hun;Min, Kyoung-Doug
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.101-104
    • /
    • 2006
  • Water management is considered to be one of the main issues to be addressed for the performance improvement of proton exchange membrane (PEM) fuel cell. For good water management, the detailed information on the water distribution inside an operating PEM fuel cell should be available to main an adequate level of hydration in the PEM While avoiding performance decline due to liquid rater flooding. For the PEM fuel cell to be commercially viable as vehicle applications, the flooding on the cathode side should be minimized during the fuel ceil operation. In this study to investigate cathode flooding and its relation with temperature distribution in flow channels, visualization study was performed on the cathode side of a PEM fuel cell. For the direct visualization of temperature field and water transport in cathode flow channels, a transparent cell was designed and manufactured using quartz window. Water transport and its two-phase flow characteristics in flow channels were investigated experimentally. Also, the visualization of temperature distribution In cathode flow channels was made by using IR camera. Results indicated that the temperature rise near the exit of cathode flow channel was found. It is found that this area corresponds to the flooding area from both temperature and flooding visualization results It is expected that this study can effectively contribute to get the detailed data on water transport linked with heat management during the operation of a PEM fuel cell

  • PDF

A Study of Humidification Method in PEMFC (고분자전해질형 연료전지의 가습 방법에 대한 연구)

  • Hyun, Deok-Su;Kim, Jun-Bom
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.3
    • /
    • pp.212-216
    • /
    • 2003
  • The humidification measurement system designed in laboratory was used to measure relative humidity and temperature of reaction gases passing through internal or external humidifier which was used in proton exchange membrane fuel cell test station. The relative humidity of gases was stabilized after $10\~20$ minutes and thus credibility of data could be assured. The effect of relative humidity on fuel cell performance could be analyzed by humidity measurement system. Extreme caution was needed to avoid humidity sensor mal-function or failure which is probable in experiment of high humidity condition near $100\%$. The amount of water carried by gas through humidifier was increased along the flow rate of gas. However, the extent of increase was lowered at high gas flow rate. These phenomena could be analyzed as residence time effect of gas in humidifier.

Experimental Investigation of the Water Droplet Dynamics inside the Simulated PEMFC Single Flow Channel with GDL (GDL을 고려한 고분자전해질형 연료전지 모사 단위 유로 채널에서의 물방울 유동 특성에 대한 실험적인 고찰)

  • Kim, Han-Sang;Ji, Yong-Whi;In, Ji-Hyun;An, Ji-Yong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.76-83
    • /
    • 2013
  • Polymer electrolyte membrane fuel cells (PEMFCs) are regarded as a promising alternative to replace the existing automotive power sources. To get high performance and long-term durability for PEMFC systems, novel water management is essential. To this end, a comprehensive understanding of dynamics of the liquid water droplets within an operating PEMFC plays an important role. In this work, direct visualization of dynamic behaviors of the water droplet in the ex situ unit flow channel of a PEMFC including gas diffusion layer (GDL) is carried out as one of the fundamental studies for novel water management. Water droplet dynamics such as the movement and growth of liquid water droplets are mainly presented. Effects of GDL characteristics and inlet air flow rate on the water droplet transport and its removal from the flow channel are also discussed. The data obtained in this study can contribute to build up the fundamental operating strategy including balanced water removal capacity for automotive PEMFC systems.

Development of Turboblower for Fuel Cell Automobile Applications (연료전지 자동차용 터보블로어 개발)

  • Kwon Hyuckroul;Park Hyungkeun;Kim Seongkyun;Kim Chimyung;Park Yongsun;Hwang Inchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.345-348
    • /
    • 2005
  • 본 개발의 목적은 연료전지차량에 탑재되는 연료전지 시스템에 장착될 공기공급기를 개발하는 것이었다. 개발된 공기공급기의 형태는 공급해야 할 공기의 유량과 압력 범위, 소음 및 향후 양산성 등을 고려하여 원심형 블로어를 선택하였으며, 차량 부하에 따른 공기공급량을 제어하기 위한 제어기도 적용되었다. 또한 차량에 적용될 경우, 예상되는 가혹한 사용환경에서 안정적인 성능을 발휘하고, 내구성을 할 수 있도록 설계되었으며, 특히, 외기온도 $45^{\circ}C$에서도 충분한 방열성능을 갖도록 모터 및 모터 방열구조를 설계하였다. 이를 위하여 공급되는 공기로 직접 모터를 냉각하는 개념을 적용하였다. 개발된 터보블로어의 응답성을 포함한 성능평가를 수행하였으며, 설계점에서 600시간 연속운전을 통하여 기본 내구평가를 완료하였다.

  • PDF

Development of 1kW Class Fuel Cell System for Auxiliary Power (1kW급 보조전원용 연료전지 시스템 개발)

  • Han, Se-Young;Choi, Dong-Min;Shin, Bum-Su;Sim, Jae-Hwi;Lee, Ho-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.189-191
    • /
    • 2007
  • 본 연구에서는 고분자전해질연료전지(PEFC)를 이용하여 보조전 원용으로 사용할 수 있는 계통연계 연료전지 시스템을 개발하였다. 또한 본 연구에서 DSP(Digital Signal Processor)를 이용한 계통연계형 전력변환장치(PCS, Power Conditioning System)와 시스템 제어기의 개발도 병행하여 수행되었다. 개발된 1kW급 보조전원용 연료전지 시스템은 다양한 조건에서의 스택 성능 실험 및 BOP 연계 시험을 통해 최적의 운전점을 도출할 수 있었으며, PID(Proportional, Integral, Differential) 운전제어 방식을 통하여 시스템의 안정적인 운전 특성을 확보하였다. 향후 본 시스템은 계통연계용은 물론 독립전원용으로도 사용이 가능할 수 있도록 전력변환장치를 설계하여 적용할 예정이다.

  • PDF