• Title/Summary/Keyword: 고랭지

Search Result 337, Processing Time 0.028 seconds

An Early-Maturing and High Grain Quality, Intermediate Breeding Rice Variety 'Jungmo1001' (벼 조생 고품질 중간모본 '중모1001')

  • Won, Yong-Jae;Jeon, Yong-Hee;Jung, Kuk-Hyun;Shin, Young-Seop;Kim, Yeon-Gyu;Choi, Im-Soo;Han, Hee-Seog;Oh, Myung-Kyu;Lee, Sang-Bok;Lee, Jeong-Il;Cho, Young-Chan;Choi, Yong-Hwan;Roh, Jae-Hwan;Ahn, Eok-Keun;Yoon, Young-Hwan
    • Korean Journal of Breeding Science
    • /
    • v.43 no.6
    • /
    • pp.606-610
    • /
    • 2011
  • 'Jungmo1001' is an early maturing intermediate breeding line developed from a cross between Cheolweon52 and SR14694-57-4-2-1-3-2-2 by the rice breeding team of National Institute of Crop Science, Rural Development Administration (RDA) in 1994. 'Jungmo1001' has about 107 days duration from seeding to heading in mid-northern inland plain, southern alpine area and north-eastern coastal areas. It has about 73 cm in culm length with semi-erect plant type and good canopy architecture. This variety has 13 tillers per hill and 90 spikelets per panicle. Its 1,000 grain-weight of brown rice is 21.2 g which is less than 26.3 g of 'Odaebyeo'. Milled kernels are translucent with non-glutinous endosperm, low amylose content (18.1%) compared with 'Odaebyeo' palatability of cooked rice is very good. This variety shows strong resistance to cold treatment, lodging, premature heading and wilting. This variety shows moderately resistant to blast disease but susceptible to bacterial blight, stripe virus and insect pests. The milled rice yield performance of this variety is about 5.45 MT/ha by ordinary culture in local adaptability test for three years. This variety may be highly adaptable to the mid-northern inland plain, southern alpine area and north-eastern coastal areas of Korea.

Factor Analysis of Soil and Water Quality Indicators in Different Agricultural Areas of the Han River Basins (한강수계 농업지대에서 토양과 수질 지표에 대한 요인 분석)

  • Jung, Yeong-Sang;Yang, Jae-E;Joo, Jin-Ho;Kim, Jeong-Je;Kim, Hyun-Jeong;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.398-404
    • /
    • 1999
  • Factor analysis technique was employed to screen the principal indicators influencing soil and water qualities in the intensively cultivated areas of the Han River Basin. Soil chemical parameters were analyzed for the soil samples collected at intensive farming area in Pyungchang-Gun, and water quality monitoring data were obtained from the agricultural small catchments of Han River Basin during 1996 and 1997. Among the $11{\times}11$ cross correlation matrix, 29 correlations were significant out of 55 soil quality indicator pairs. The overall Kaiser's measure of sampling adequacy(KMS) value was acceptable with 0.60. Most indicators except iron were acceptable. Among soil indicators, the first factors showing high factor loadings were pH, Ca and Mg. The factor loading was the highest for Ca. The second factor could be characterized as phosphate and micronutrient. The third factor was organic matter and EC, and the fourth factor was potassium and Fe. Out of 190 water quality indicators, 86 correlations were significant. Overall KMS value was 0.74, but the KMS values for pH, TSS, Cd, Cu and Fe were lower than 50. The first factor of EC accounts 27.1 percents of the total variance, and showed high factor loadings with Na, Ca, $SO_4$, Mg, K, Cl, $NO_3$, and T-N. The second factor showed high loadings with Zn, Fe, Mn and Cd. The third to seventh factors could be characterized as $PO_4$, TSS, inorganic nitrogen, pH and T-P, and Cu factors, respectively. The factor score for EC was the highest in Kuri, followed by Chunchon, Dunnae and Daegwanryng. The factor score for heavy metals were the highest in the Daegwanryng. The results demonstrated that the factor analysis could be useful to select the most principal factor influencing soil and water qualities in the agricultural watershed.

  • PDF

The Monitoring of Agricultural Environment in Daegwallyeong Area (대관령 지역의 농업환경 모니터링)

  • Park, Kyeong-Hun;Yun, Hye-Jeong;Ryu, Kyoung-Yul;Yun, Jeong-Chul;Lee, Jeong-Ju;Hwang, Hyun-Ah;Kim, Ki-Deog;Jin, Yong-Ik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1027-1034
    • /
    • 2011
  • In order to provide the basic information on the agricultural environment in Daegwallyeong Highland, the characters of weather, water, and soil quality were investigated. The meteorological characteristics was monitored by automatic weather system (AWS) at 17 sites. The quality of water for samples were collected monthly at 24 sites depending on landuse style. Soil samples were collected from a forest, grassland, and the major vegetable cultivation areas such as potato, carrot, Chinese cabbage, onion, head lettuce, and welsh onion field. The weather showed the mountain climate, and the average yearly temperature is $6.4^{\circ}C$, the average temperature in January is $-7.6^{\circ}C$ and the average temperature in July is $19.1^{\circ}C$, and the change of temperature on the districts of Daegwallyeong is severe. The yearly record of precipitation shows 1717.2 mm. The water quality of crop field was worse than forest or grassland in Daewallyeong highland. In 2005, annual T-N, T-P, SS distribution of Chinese cabbage field showed 7.4~11.3, 0.061~0.1, and $3.0{\sim}53.0mg\;L^{-1}$. The potato field showed 3.1~7.2, 0.019~0.056 and $0.5{\sim}3.0mg\;L^{-1}$, respectively. Being compared of water quality between potato field and chinese cabbage field, it showed that the water quality of Chinese cabbage field was worse than potato field. On farming, the soil of crop cultivation showed pH 5.6 to 6.8, $18.0{\sim}42.4g\;kg^{-1}$ of OM, $316{\sim}658mg\;kg^{-1}$ of Avail. $P_2O_5$. The content of cations showed $0.41{\sim}0.88cmol_c\;kg^{-1}$ of Exch. K, $3.73{\sim}7.07cmol_c\;kg^{-1}$ of Exch. Ca and $1.17{\sim}1.90cmol_c\;kg^{-1}$ of Exch. Mg.

Assessment of Nutrient Losses in Different Slope Highland Soils Amended with Livestock Manure Compost (경사도와 축분 부산물비료 시용에 따른 고랭지 밭의 양분 유실량)

  • Joo, Jin-Ho;Lee, Seung-Been
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.361-367
    • /
    • 2011
  • Soil fertility of alpine soils in Gangwon-Do has been deteriorating because of heavy input of chemical fertilizers for intensive crop production. To reduce application of chemical fertilizers, use of livestock manure compost in alpine soils increases consistently. Soil loss and runoff due to heavy rainfall in alpine area cause nutrient loss from soil, and subsequently pollute stream water. Therefore, the objective of this study was to assess nutrient efficiency and loss in Chinese cabbage cultivated soil with different livestock manure composts in several slopes. As control, chemical fertilizer was applied at the rate of $250-78-168kg\;ha^{-1}$ for $N-P_2O_5-K_2O$. Each pig-and chicken manure compost was applied at the rate of $10MT\;ha^{-1}$. Chemical fertilizer + chicken manure compost was applied as same rate. Four treatments was practiced in 5, 20, and 35% filed slopes, respectively. We monitored the amounts of soil loss and runoff water after rainfalls, and we also analyzed the contents of nutrients in soil and runoff water through lysimeter installed in alpine agricultural institute in Gangwon-Do. T-N loss due to soil loss was much greater with increasing filed slops rather than different fertilizer treatments. T-N loss has positive relationship with field slopes, which showing soil loss (MT/ha) = 1.66 slopes (%) - 3.5 ($r^2$ = 0.99). Available phosphate and exchangeable cations showed similar tendency with increasing slopes. T-N and T-P losses caused by runoff water were highest in chemical fertilizer (NPK) + chicken manure compost treated plot, while lowest in chemical fertilizer treatment. T-N contents (2.13, 1.95%) in chinese cabbage treated either pig and chicken manure composts compared to that (2.65%) of chemical fertilizer were significantly less. This could be resulted from much greater T-N loss in soil treated with pig and chicken manure composts.

Development of Cloud and Shadow Detection Algorithm for Periodic Composite of Sentinel-2A/B Satellite Images (Sentinel-2A/B 위성영상의 주기합성을 위한 구름 및 구름 그림자 탐지 기법 개발)

  • Kim, Sun-Hwa;Eun, Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.989-998
    • /
    • 2021
  • In the utilization of optical satellite imagery, which is greatly affected by clouds, periodic composite technique is a useful method to minimize the influence of clouds. Recently, a technique for selecting the optimal pixel that is least affected by the cloud and shadow during a certain period by directly inputting cloud and cloud shadow information during period compositing has been proposed. Accurate extraction of clouds and cloud shadowsis essential in order to derive optimal composite results. Also, in the case of an surface targets where spectral information is important, such as crops, the loss of spectral information should be minimized during cloud-free compositing. In thisstudy, clouds using two spectral indicators (Haze Optimized Tranformation and MeanVis) were used to derive a detection technique with low loss ofspectral information while maintaining high detection accuracy of clouds and cloud shadowsfor cabbage fieldsin the highlands of Gangwon-do. These detection results were compared and analyzed with cloud and cloud shadow information provided by Sentinel-2A/B. As a result of analyzing data from 2019 to 2021, cloud information from Sentinel-2A/B satellites showed detection accuracy with an F1 value of 0.91, but bright artifacts were falsely detected as clouds. On the other hand, the cloud detection result obtained by applying the threshold (=0.05) to the HOT showed relatively low detection accuracy (F1=0.72), but the loss ofspectral information was minimized due to the small number of false positives. In the case of cloud shadows, only minimal shadows were detected in the Sentinel-2A/B additional layer, but when a threshold (= 0.015) was applied to MeanVis, cloud shadowsthat could be distinguished from the topographically generated shadows could be detected. By inputting spectral indicators-based cloud and shadow information,stable monthly cloud-free composited vegetation index results were obtained, and in the future, high-accuracy cloud information of Sentinel-2A/B will be input to periodic cloud-free composite for comparison.

Sprouting Inhibition after CIPC Spraying on Early and Mid-season Potato Varieties during Storage in Semi-underground Warehouse at Room Temperature in Summer (CIPC 처리한 조·중생종 감자의 반지하 저장고를 이용한 하계 실온저장 중 맹아 억제 효과 비교)

  • Kyusuk Han;Byung-Sup Kim;Sae Jin Hong;Young Hun Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.172-180
    • /
    • 2023
  • This study was carried out to determine the sprouting period of early and mid-season varieties, which includes 'Atlantic', 'Chubaek', and 'Superior', during the summer storage period in a semi-underground warehouse without cooling system. And also it was investigated the effect of chlorpropham [Propan-2-yl N-(3-chlorophenyl)carbamate, CIPC] treatment on the sprouting inhibition for the varieties. This study was conducted to figure out a sprout inhibitory effect when CIPC was applied to 1kg of the potato tubers at concentrations of 10 mg and 20 mg which are lower than the treatment concentrations of ca 30 mg prescribed by the positive list system (PLS). The internal temperature of the warehouse used in this experiment was lowered by 5℃ or more than the outside temperature. The difference between the lowest and highest temperature during the experiment throughout the day was 5℃. It showed the effect of reducing to 1/2 of the difference in outdoor temperature. As for the sprouting of potatoes, the extremely early variety 'Chubaek' sprouts appeared at the 6th week of storage of control and it was the fastest sprouting potato among the control groups of the varieties. Sprouting began to appear in the Superior at the 6th week of storage, while the 'Atlantic' sprouted at the 8th week of storage. The appearance of sprouts was suppressed in all treatment groups of 'Atlantic' and 'Superior' varieties in CIPC treatments. Sprouts were observed in all treatment groups of 'Chubaek' after the 7th week, but the elongations of the sprouts in tubers were completely inhibited until the 8th week of storage. 'Atlantic' and 'Superior' seemed to have a sprouting inhibitory effect even with a low CIPC concentration of 10 mg·kg-1, with the exception of extremely early variety 'Chubaek' that breaks out of the dormancy quickly. Although weight loss occurred continuously during storage, it was minor loss of 0.7-1.6%. There was no consistent trend for changes of the loss in the varieties and CIPC treatments. Most common pathological disorder was the dry rot during the experiment, but only few were affected. The use of the tubers treated at 18℃ and 90% RH for 10 days and the rack of refrigeration system which lead to lack of convection seemed to have suppressed the spread of pathogens.

Evaluation of K-Cabbage Model for Yield Prediction of Chinese Cabbage in Highland Areas (고랭지 배추 생산 예측을 위한 K-배추 모델 평가)

  • Seong Eun Lee;Hyun Hee Han;Kyung Hwan Moon;Dae Hyun Kim;Byung-Hyuk Kim;Sang Gyu Lee;Hee Ju Lee;Suhyun Ryu;Hyerim Lee;Joon Yong Shim;Yong Soon Shin;Mun Il Ahn;Hee Ae Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.398-403
    • /
    • 2023
  • Process-based K-cabbage model is based on physiological processes such as photosynthesis and phenology, making it possible to predict crop growth under different climate conditions that have never been experienced before. Current first-stage process-based models can be used to assess climate impact through yield prediction based on climate change scenarios, but no comparison has been performed between big data obtained from the main production area and model prediction so far. The aim of this study was to find out the direction of model improvement when using the current model for yield prediction. For this purpose, model performance evaluation was conducted based on data collected from farmers growing 'Chungwang' cabbage in Taebaek and Samcheok, the main producing areas of Chinese cabbage in highland region. The farms surveyed in this study had different cultivation methods in terms of planting date and soil water and nutrient management. The results showed that the potential biomass estimated using the K-cabbage model exceeded the observed values in all cases. Although predictions and observations at the time of harvest did not show a complete positive correlation due to limitations caused by the use of fresh weight in the model evaluation process (R2=0.74, RMSE=866.4), when fitting the model based on the values 2 weeks before harvest, the growth suitability index was different for each farm. These results are suggested to be due to differences in soil properties and management practices between farms. Therefore, to predict attainable yields taking into account differences in soil and management practices between farms, it is necessary to integrate dynamic soil nutrient and moisture modules into crop models, rather than using arbitrary growth suitability indices in current K-cabbage model.