• Title/Summary/Keyword: 고도계

Search Result 715, Processing Time 0.031 seconds

Ground Altitude Measurement Algorithm using Laser Altimeter and Ultrasonic Rangefinder for UAV (레이저 고도계와 초음파 거리계를 이용한 무인항공기 지면고도측정 알고리즘 설계)

  • Choi, Kyeung-Sik;Hyun, Jung-Wook;Jang, Jae-Won;Ahn, Dong-Man;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.749-756
    • /
    • 2013
  • This paper presents an algorithm concerning the ground altitude measurement using a laser altimeter and an ultrasonic rangefinder for UAV(Unmanned Aerial Vehicle). A simple ground test conducted using the laser altimeter and ultrasonic rangefinder that are used for conducting the low altitude measurement of UAV and identify the characteristics of each sensor. Especially, the disadvantages of the laser altimeter were checked through the ground test. After that who those are participated in this paper planned the algorithm which is complemented by the ultrasonic rangefinder and the experiment was conducted. The laser altimeter and the ultrasonic rangefinder were fused by a loosely coupled method by Kalman filter. The paper shows that stable value of altitude complemented by the ultrasonic rangefinder that covers the laser altimeter's drawbacks can be measured through the ground test.

An Efficient Signal Processor for Interferometric Synthetic Aperture Radar Altimeter (레이더 간섭 고도계 처리 기법 개발)

  • Lee, Dong-Taek;Jung, Hyung-Sup;Yoon, Geun-Won
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.06a
    • /
    • pp.128-129
    • /
    • 2010
  • 기존의 고도계는 레이더 특성에 의해 직하부의 높이 값을 정밀하게 관측할 수 없었다. 그러나 레이더 간섭 고도계는 SAR(Synthetic Aperture Radar) 영상의 칩 펄스(Chirp Pulse)를 이용한 고정밀 경사거리(Slant Range Distance)관측, 도플러 효과를 이용한 고정밀 경사각(Squint Angle)의 관측 및 레이더 간섭기법(SAR Interferometry)을 이용한 고정밀 관측각(Look Angle)의 관측을 가능하게 하였다. 이 연구의 목적은 레이더 간섭 고도계의 효율적인 신호처리 기법의 개발에 있다.

  • PDF

칼만필터를 이용한 Baro-Inertial 고도루프의 설계 및 성능분석

  • Kim, Hyeon-Seok;Lee, Yun-Seon;Je, Chang-Hae
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.455-458
    • /
    • 2006
  • 관성항법장치는 관성항법장치를 구성하는 관성센서인 가속도계 및 자이로의 오차요소에 의해 수평축 항법오차는 슐러주기를 가지고 서서히 증가하는 반면에 수직축 오차는 기하급수적으로 증가하는 특성을 가지고 있다. 그러므로 관성항법장치를 장시간 운용하는 경우에는 비관성 보조센서를 이용하여 관성항법장치의 수직축 항법오차에 대한 보정을 반드시 수행하여야 한다. 관성항법장치의 수직축 항법오차를 보정하기 위한 비관성 보조센서의 일종인 기압고도계는 계측된 대기압과 모델링 된 대기압을 비교하여 항체의 고도를 측정하는 방법을 이용하기 때문에 항체의 자세변화 등에 매우 민감하고 대기압 측정오차에 의해 매우 큰 진폭의 잡음 및 바이어스가 존재한다. 본 논문에서는 시뮬레이션 및 시험을 통하여 기압 고도계의 잡음 및 바이어스 오차 성분에 의한 baro-inertial 고도루프의 성능분석 결과를 제시하고 기압고도계 잡음에 둔감한 INS/기압고도계 칼만필터의 설계 결과를 제시한다.

  • PDF

A performance analysis of terrain-aided navigation(TAN) algorithms using interferometric radar altimeter (간섭계 레이더 고도계를 활용한 지형참조항법의 성능 분석)

  • Jeong, Seung-Hwan;Yoon, Ju-Hong;Park, Min-Gyu;Kim, Dae-Young;Sung, Chang-Ki;Kim, Hyun-Suk;Kim, Yoon-Hyung;Kwak, Hee-Jun;Sun, Woong;Yoon, Kuk-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.285-291
    • /
    • 2012
  • The paper experimentally verifies the performance of Terrain-Aided Navigation (TAN) using an interferometric radio altimeter, which is recently used due to its accuracy. First, we propose a TAN system that utilizes an interferometric radio altimeter as a measurement system. Second, we implement extended Kalman filter, unscented Kalman filter, and particle filter to evaluate the performance of TAN according to the selection of filters and the difference of environments.

Performance Analysis of Interferometric Radar Altimeter by Terrain Type for Estimating Reliability of Terrain Referenced Navigation (지형대조항법의 신뢰성 추정을 위한 간섭계 레이더 고도계의 지형 유형별 성능 분석)

  • Ha, Jong Soo;Lee, Han Jin;Lee, Soo Ji;Hong, Sung Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.2
    • /
    • pp.83-92
    • /
    • 2022
  • This paper analyzes the performance of the IRA(Interferometric Radar Altimeter) by terrain type for estimating reliability of TRN(Terrain Referenced Navigation). The accuracy of the altitude is one of the key parameters of TRN's accuracy. When the antenna of the IRA has wide beamwidth, its altitude accuracy is directly affected by the configuration of the earth's surface. Hence, the accuracy and reliability of TRN can also be affected and may cause ambiguity in positioning. We present analysis data for estimating the reliability of TRN by modeling several topographies and analyzing the performance of the IRA. The results of the analysis are verified by comparison with test data.

A Study on The Advanced Altitude Accuracy of GPS with Barometric Altitude Sensor (기압고도계를 적용한 GPS 고도 데이터 성능 향상에 관한 연구)

  • Kim, Nam-Hyeok;Park, Chi-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.18-22
    • /
    • 2012
  • This paper suggests an altitude determination algorithm using GPS and barometric altitude sensors and evaluates the algorithm by digital map contour. A code based GPS altitude has lots of errors so that the car navigation companies can not use this data. Therefore, altitude is calculated by convergence data with GPS and barometric altitude variance in this paper. The modified altitudes are compared with the digital map contour and then this algorithm's effect is evaluated for the car navigation systems.

Development of Altitude Determination System by Using GPS/INS/Baroaltimeter (GPS/INS/기압고도계를 결합한 고도 결정 시스템 개발)

  • Kim, Seong-Pil;Yoo, Chang-Sun;Salychev, Oleg-S.;Kim, Eung-Tai
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.51-56
    • /
    • 2005
  • This paper introduces an altitude determination algorithm using GPS/INS/Baroaltimeter and evaluates the algorithm by real field tests. The test results show that the proposed method can determine the altitude of an aircraft continuously and sensitively. Therefore, it is appropriate to be used as an altimeter for a flight control system, especially for the automatic take-off and landing. In addition, it is shown that the second and the third baro-inertial vertical channel damping methods are essentially complementary filters while the proposed scheme improves these complementary filters.

Validation of Sea Surface Wind Speeds from Satellite Altimeters and Relation to Sea State Bias - Focus on Wind Measurements at Ieodo, Marado, Oeyeondo Stations (인공위성 고도계 해상풍 검증과 해상상태편차와의 관련성 - 이어도, 마라도, 외연도 해상풍 관측치를 중심으로 -)

  • Choi, Do-Young;Woo, Hye-Jin;Park, Kyung-Ae;Byun, Do-Seong;Lee, Eunil
    • Journal of the Korean earth science society
    • /
    • v.39 no.2
    • /
    • pp.139-153
    • /
    • 2018
  • The sea surface wind field has long been obtained from satellite scatterometers or passive microwave radiometers. However, the importance of satellite altimeter-derived wind speed has seldom been addressed because of the outstanding capability of the scatterometers. Satellite altimeter requires the accurate wind speed data, measured simultaneously with sea surface height observations, to enhance the accuracy of sea surface height through the correction of sea state bias. This study validates the wind speeds from the satellite altimeters (GFO, Jason-1, Envisat, Jason-2, Cryosat-2, SARAL) and analyzes characteristics of errors. In total, 1504 matchup points were produced using the wind speed data of Ieodo Ocean Research Station (IORS) and of Korea Meteorological Administration (KMA) buoys at Marado and Oeyeondo stations for 10 years from December 2007 to May 2016. The altimeter wind speed showed a root mean square error (RMSE) of about $1.59m\;s^{-1}$ and a negative bias of $-0.35m\;s^{-1}$ with respect to the in-situ wind speed. Altimeter wind speeds showed characteristic biases that they were higher (lower) than in-situ wind speeds at low (high) wind speed ranges. Some tendency was found that the difference between the maximum and minimum value gradually increased with distance from the buoy stations. For the improvement of the accuracy of altimeter wind speed, an equation for correction was derived based on the characteristics of errors. In addition, the significance of altimeter wind speed on the estimation of sea surface height was addressed by presenting the effect of the corrected wind speeds on the sea state bias values of Jason-1.

Development of an FMCW Radar Altimeter Simulator Using Optical Delay Lines (광 지연선을 이용한 FMCW 전파고도계 시뮬레이터 개발)

  • Lee, Jae-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.208-216
    • /
    • 2017
  • This paper presents the design method of an FMCW(frequency-modulated continuous-wave) altitude simulator which generates propagation delay signals according to target distances to test the radar altimeter. To improve the conventional RF method for creating delay signals, the simulator is designed by the RF-optics-RF method using optical delay lines. In addition, it is designed to simulate the Doppler shift and jamming that may occur in actual flight environment. In order to evaluate the performance of the developed simulator, the integration tests have been conducted with the radar altimeter. Through the test, we successfully verified the performance of the simulator.

Sea Ice Detection using Microwave Remote Sensing Techniques in the Weddell Sea, Antarctica (마이크로웨이브 원격탐사를 이용한 남극 웨델해 해빙 관측)

  • 황종선;이방용;심재설;홍성민;윤호일;권태영;민경덕;김정우
    • Economic and Environmental Geology
    • /
    • v.36 no.2
    • /
    • pp.141-148
    • /
    • 2003
  • We investigated the distribution of sea ice using various microwave remote sensing techniques including radar altimeter, radiometer, and scatterometer data in the part of Drake passage, Antarctica, between the area 45$^{\circ}$-75$^{\circ}$W and 55$^{\circ}$-66$^{\circ}$S. Topex/poseidon radar altimeter data were used to analyze the monthly distribution of sea ice surface area between 1992 and 1999 by using Geo_bad_1 flag or MGDR. From satellite radiometer measurements of DMSP's SSM/I, sea ice concentration was extracted during the period from 1993 to 1996. To select a value of ice concentration, normally ranging from 0 to 100%, that can be used as a critical value of judging the existence for ice, sea ice areas estimated from various ice concentrations of radiometer measurements were correlated with the area estimated from the radar altimeter measurements. As a result, 20% of ice concentration was selected, and, then this value was used to integrate radiometer data with radar altimeter and ERS-1/2 scatterometer data. To indirectly verify the result, the last 20 year's sea ice concentration was correlated with surface temperature data near Esper-anza Observation Station. The two data showed a high correlation coefficient of 0.86. The amount of sea ice and temperature variation were found to be closely related in the study area, and this indirectly verifies the result of this study. We provided a method to judge the existence of sea ice from ice concentration of satellite radiometer data and suggested a method to monitor more detailed temporal and spatial variation of sea ice distribution by integra-tion of various microwave remote sensing techniques.