DOI QR코드

DOI QR Code

Validation of Sea Surface Wind Speeds from Satellite Altimeters and Relation to Sea State Bias - Focus on Wind Measurements at Ieodo, Marado, Oeyeondo Stations

인공위성 고도계 해상풍 검증과 해상상태편차와의 관련성 - 이어도, 마라도, 외연도 해상풍 관측치를 중심으로 -

  • Choi, Do-Young (Department of Science Education, Seoul National University) ;
  • Woo, Hye-Jin (Department of Science Education, Seoul National University) ;
  • Park, Kyung-Ae (Department of Earth Science Education/Research Institute of Oceanography, Seoul National University) ;
  • Byun, Do-Seong (Ocean Research Division, Korea Hydrographic and Oceanographic Agency) ;
  • Lee, Eunil (Ocean Research Division, Korea Hydrographic and Oceanographic Agency)
  • 최도영 (서울대학교 과학교육과) ;
  • 우혜진 (서울대학교 과학교육과) ;
  • 박경애 (서울대학교 지구과학교육과/해양연구소) ;
  • 변도성 (국립해양조사원 해양과학조사연구실) ;
  • 이은일 (국립해양조사원 해양과학조사연구실)
  • Received : 2018.04.16
  • Accepted : 2018.04.24
  • Published : 2018.04.30

Abstract

The sea surface wind field has long been obtained from satellite scatterometers or passive microwave radiometers. However, the importance of satellite altimeter-derived wind speed has seldom been addressed because of the outstanding capability of the scatterometers. Satellite altimeter requires the accurate wind speed data, measured simultaneously with sea surface height observations, to enhance the accuracy of sea surface height through the correction of sea state bias. This study validates the wind speeds from the satellite altimeters (GFO, Jason-1, Envisat, Jason-2, Cryosat-2, SARAL) and analyzes characteristics of errors. In total, 1504 matchup points were produced using the wind speed data of Ieodo Ocean Research Station (IORS) and of Korea Meteorological Administration (KMA) buoys at Marado and Oeyeondo stations for 10 years from December 2007 to May 2016. The altimeter wind speed showed a root mean square error (RMSE) of about $1.59m\;s^{-1}$ and a negative bias of $-0.35m\;s^{-1}$ with respect to the in-situ wind speed. Altimeter wind speeds showed characteristic biases that they were higher (lower) than in-situ wind speeds at low (high) wind speed ranges. Some tendency was found that the difference between the maximum and minimum value gradually increased with distance from the buoy stations. For the improvement of the accuracy of altimeter wind speed, an equation for correction was derived based on the characteristics of errors. In addition, the significance of altimeter wind speed on the estimation of sea surface height was addressed by presenting the effect of the corrected wind speeds on the sea state bias values of Jason-1.

해상풍은 장기간동안 인공위성 산란계와 마이크로파 복사계를 주로 활용하여 관측되어왔다. 반면 위성 고도계 산출 풍속 자료의 중요성은 산란계의 탁월한 해상풍 관측 성능으로 인해 거의 부각되지 않았다. 인공위성 고도계 풍속자료는 해수면고도를 산출하기 위한 해상상태편차(sea state bias) 보정항의 입력 자료로서 활용됨에 따라 높은 정확도가 요구된다. 본 연구에서는 인공위성 고도계(GFO, Jason-1, Envisat, Jason-2, Cryosat-2, SARAL) 풍속을 검증하고 오차 특성을 분석하기 위하여 이어도 해양과학기지와 마라도, 외연도 해양기상부이의 풍속 자료를 활용하여 2007년 12월부터 2016년 5월까지 총 1504개의 일치점 자료를 생성하였다. 해양실측 풍속에 대한 고도계 풍속은 $1.59m\;s^{-1}$의 평균 제곱근오차와 $-0.35m\;s^{-1}$의 음의 편차를 보였다. 해양실측 풍속에 대한 고도계 해상풍 오차를 분석한 결과 고도계 해상풍은 풍속이 약할 때 과대추정되며 풍속이 강할 때 과소추정되는 특징을 보였다. 위성-실측 자료 간의 거리에 따른 고도계 풍속 오차를 분석한 결과 구간별 오차의 최댓값과 최솟값의 차는 거리에 따라 점차 증가하였다. 고도계 풍속의 정확도 향상을 위하여 분석된 오차 특성을 기반으로 보정식을 유도한 후 고도계 풍속을 보정하였다. 보정 전후의 풍속자료를 활용하여 해상상태편차를 산출하였으며 Jason-1의 해상상태편차에 대한 해상풍 오차 보정의 영향을 확인하였다.

Keywords

References

  1. Abdalla, S., 2014, Calibration of SARAL/AltiKa wind speed. IEEE Geoscience and Remote Sensing Letters, 11, 1121-1123. https://doi.org/10.1109/LGRS.2013.2287805
  2. Abdalla, S., and Chiara, G.D., 2017, Estimating random errors of scatterometer, altimeter, and model wind speed data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 2406-2414. https://doi.org/10.1109/JSTARS.2017.2659220
  3. Chelton, D.B., 1994, The sea state bias in altimeter estimates of sea level from collinear analysis of TOPEX data. Journal of Geophysical Research, 99, 24995-25008. https://doi.org/10.1029/94JC02113
  4. Chelton, D.B., Ries, J.C., Haines, B.J., Fu, L.-L., and Callahan, P.S., 2001, Satellite altimetry. In Fu L.-L. and Cazenave A. (eds.), Satellite altimetry and the earth sciences: A handbook for techniques and applications, Academic Press, San Diego, CA, USA, 1-131.
  5. Dobson, E., Monaldo, F., Goldhirsh, J., and Wilkerson J., 1987, Validation of Geosat altimeterderived wind speeds and significant wave heights using buoy data. Journal of Geophysical Research Atmospheres, 921, 10719-10732.
  6. Durrant, T.H., Greenslade, D.J.M., and Simmonds, I., 2009, Validation of Jason-1 and Envisat remotely sensed wave heights. Journal of Atmospheric and Oceanic Technology, 26, 123-134. https://doi.org/10.1175/2008JTECHO598.1
  7. Ebuchi, N., and Kawamura, H., 1994, Validation of wind speeds and significant wave heights observed by the TOPEX altimeter around Japan. Journal of Oceanography, 50, 479-487. https://doi.org/10.1007/BF02234969
  8. Freilich, M.H., and Challenor, P.G., 1994, A new approach for determining fully empirical altimeter wind speed model functions. Journal of Geophysical Research, 99, 25051-25062. https://doi.org/10.1029/94JC01996
  9. Gaspar, P., Ogor, F., Le Traon, P.Y., and Zanife, O.Z., 1994, Estimating the sea state bias of the TOPEX and POSEIDON altimeters from crossover differences. Journal of Geophysical Research, 99, 24981-24994. https://doi.org/10.1029/94JC01430
  10. Gommenginger, C.P., Srokosz, M.A., Challenor, P.G., and Cotton P.D., 2002, Development and validation of altimeter wind speed algorithms using an extended collocated buoy/Topex dataset. IEEE Transactions on Geoscience and Remote Sensing, 40, 251-260. https://doi.org/10.1109/36.992782
  11. Gourrion, J., Vandemark, D., Bailey, S., and Chapron, B., 2000, Satellite altimeter models for surface wind speed developed using ocean satellite crossovers. French Research Institute for Exploitation of the Sea, DROOS-2000-02, 61 p.
  12. Gourrion, J., Vandemark, D., Bailey, S., Chapron, B., Gommenginger, C.P., Challenor, P.G., and Srokosz, M.A., 2002, A two parameter wind speed algorithm for Kuband altimeters. Journal of Atmospheric and Oceanic Technology, 19, 2030-2048. https://doi.org/10.1175/1520-0426(2002)019<2030:ATPWSA>2.0.CO;2
  13. Gower, J.F.R., 1996, Intercalibration of wave and wind data from TOPEX/POSEIDON. Journal of Geophysical Research, 101, 3817-3829. https://doi.org/10.1029/95JC03281
  14. Hwang, P.A., Teague, W.J., Jacobs, G.A., and Wang, D.W., 1998, A statistical comparison of wind speed, wave height and wave period derived from satellite altimeters and ocean buoys in the Gulf of Mexico region. Journal of Geophysical Research, 103, 10451-10468. https://doi.org/10.1029/98JC00197
  15. Jeong J.Y., Shim J.S., Lee D.K., Min I.K., and Kwon J.I., 2008, Validation of QuikSCAT wind with resolution of 12.5 km in the vicinity of Korean Peninsula. Ocean and Polar Research, 30, 47-58. https://doi.org/10.4217/OPR.2008.30.1.047
  16. Kang Y.H., Seuk H.B., Bang J.H., and Kim Y.K., 2015, Seasonal characteristics of sea surface winds and significant wave heights observed marine meterological buoys and lighthouse AWSs near the Korean Peninsula. Journal of Environmental Science International, 24, 291-302. https://doi.org/10.5322/JESI.2015.24.3.291
  17. Korea Hydrographic and Oceanographic Agency(KHOA): http://www.khoa.go.kr/ (2018. 4. 16)
  18. Kumar, U.M., Swain, D., Sasamal, S.K., Reddy, N.N., and Ramanjappa, T., 2015, Validation of SARAL/AltiKa significant wave height and wind speed observations over the North Indian Ocean. Journal of Atmospheric and Solar-Terrestrial Physics, 135, 174-180. https://doi.org/10.1016/j.jastp.2015.11.003
  19. Labroue, S., Gaspar, P., Dorandeu, J., Zanife, O.Z., Mertz, F., Vincent, P., and Choquet, D., 2004, Non-parametric estimates of the sea state bias for Jason-1 radar altimeter, Marine Geodesy, 27, 453-481. https://doi.org/10.1080/01490410490902089
  20. Lillibridge, J., Scharro, R., Abdalla, S., and Vandemark D., 2014, One- and two-dimensional wind speed models for Ka-band altimetry, Journal of Atmospheric and Oceanic Technology, 31, 630-638. https://doi.org/10.1175/JTECH-D-13-00167.1
  21. Liu, W.T., and Tang, W., 1996, Equivalent neutral wind, Jet Propulsion Laboratory, JPL Publication 96-17, 22 p.
  22. Liu, W.T., Katsaros, K.B., and Businger, J.A., 1979, Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface, Journal of the Atmospheric Sciences, 36, 1722-1735. https://doi.org/10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2
  23. Paulson, C.A., 1970, The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer, Journal of Applied Meteorology, 9, 857-861. https://doi.org/10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2
  24. Witter, D.L., and Chelton, D.B., 1991, A Geosat wind speed algorithm and a method for altimeter wind speed algorithm development. Journal of Geophysical Research, 96, 8853-8860. https://doi.org/10.1029/91JC00414
  25. Woo, H.J., Park, K.A., Byun, D.S., Lee, J.Y., and Lee, E.I, 2018, Characteristics of the Differences between Significant Wave Height at Ieodo Ocean Research Station and Satellite Altimeter-measured Data over a Decade (2004-2016), 23, 1-19.
  26. Wu, J., 1999, On wave dependency of altimeter sea returns-Weak fetch influence on short ocean waves. Journal of Atmospheric and Oceanic Technology, 16, 373-378. https://doi.org/10.1175/1520-0426(1999)016<0373:OWDOAS>2.0.CO;2
  27. Zieger, S., Vinoth, J., and Young, I.R., 2009, Joint calibration of multiplatform altimeter measurements of wind speed and wave height over the past 20 years. Journal of Atmospheric and Oceanic Technology, 26, 2549-2564. https://doi.org/10.1175/2009JTECHA1303.1

Cited by

  1. Status and Prospects of Marine Wind Observations from Geostationary and Polar-Orbiting Satellites for Tropical Cyclone Studies vol.39, pp.4, 2018, https://doi.org/10.5467/JKESS.2018.39.4.305