DOI QR코드

DOI QR Code

Improvement of Non-linear Estimation Equation of Rainfall Intensity over the Korean Peninsula by using the Brightness Temperature of Satellite and Radar Reflectivity Data

기상위성 휘도온도와 기상레이더 반사도 자료를 이용한 한반도 영역의 강우강도 추정 비선형 관계식 개선

  • Choi, Haklim (Department of Astronomy and Atmospheric Sciences, KyungPook National University) ;
  • Seo, Jong-Jin (Department of Astronomy and Atmospheric Sciences, KyungPook National University) ;
  • Bae, Juyeon (Department of Astronomy and Atmospheric Sciences, KyungPook National University) ;
  • Kim, Sujin (Department of Astronomy and Atmospheric Sciences, KyungPook National University) ;
  • Lee, Kwang-Mog (Department of Astronomy and Atmospheric Sciences, KyungPook National University)
  • 최학림 (경북대학교 천문대기과학과) ;
  • 서종진 (경북대학교 천문대기과학과) ;
  • 배주연 (경북대학교 천문대기과학과) ;
  • 김수진 (경북대학교 천문대기과학과) ;
  • 이광목 (경북대학교 천문대기과학과)
  • Received : 2017.11.30
  • Accepted : 2018.04.24
  • Published : 2018.04.30

Abstract

The purpose of this study is to improve the quantitative precipitation estimation method based on satellite brightness temperature. The non-linear equation for rainfall estimation is improved by analysing precipitation cases around the Korean peninsula in summer. Radar reflectivity is adopted the CAPPI 1.5 and CMAX composite fields that provided by the Korea Meteorological Agency (KMA). In addition, the satellite data are used infrared, water vapor and visible channel measured from meteorological imager sensor mounted on the Chollian satellite. The improved algorithm is compared with the results of the A-E method and CRR analytic function. POD, FAR and CSI are 0.67, 0.76 and 0.21, respectively. The MAE and RMSE are 2.49 and 6.18 mm/h. As the quantitative error was reduced in comparison to A-E and qualitative accuracy increased in compare with CRR, the disadvantage of both algorithms are complemented. The method of estimating precipitation through a relational expression can be used for short-term forecasting because of allowing precipitation estimation in a short time without going through complicated algorithms.

본 연구의 목적은 위성의 밝기온도를 기반으로 한 정량적 강우량 추정기법의 개선을 위함이다. 우리나라 여름철 강우사례를 이용하여 강우추정을 위한 비선형 관계식을 개선하였다. 분석을 위해 레이더 자료로 기상청 기상레이더 관측망의 고도 1.5 km와 CMAX 반사도 합성자료를 사용하였으며, 위성자료는 천리안 위성의 가시, 적외, 수증기 채널의 자료를 이용하였다. 새롭게 도출된 알고리즘은 A-E method, CRR v4.0 analytic function의 결과와 비교를 하였다. 검증을 위해 우리나라 ASOS에서 관측한 지상강우량 자료를 사용하였다. 공간검증을 위해 검증지수로 POD, FAR, CSI를 계산하였으며 각각 0.67, 0.76, 0.21로 나타났다. 정량적 강우검증을 위해 MAE와 RMSE를 계산하였으며 각각 2.49, 6.18 mm/h였다. A-E에 비하여 정량적인 오차가 줄어들었으며 CRR에 비하여 공간적인 정확도가 증가하였다. 개선한 관계식을 적용한 방법이 두 알고리즘의 부족한 부분을 보완할 수 있는 것으로 판단된다. 개선한 관계식을 통해 강우를 추정하는 방법은 복잡한 알고리즘을 거치지 않고 짧은 시간에 강우추정이 가능함으로써 현업용 실시간 초단기 예보에 활용될 수 있다.

Keywords

References

  1. Bedka, K., Brunner, J., Dworak, R., Feltz, W., Otkin, J., and Greenwald, T., 2010, Objective satellite-based detection of overshooting tops using infrared window channel brightness temperature gradients. Journal of applied meteorology and climatology, 49(2), 181-202. https://doi.org/10.1175/2009JAMC2286.1
  2. Borneman, R. 1988, Satellite rainfall estimating program of the NOAA/NESDIS Synoptic Analysis Branch. Natl. Wea. Dig, 13(2), 7-15.
  3. Dixon, M. and Wiener, G., 1993, TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting-A radar-based methodology. Journal of Atmospheric and Oceanic Technology, 10, 785-797. https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2
  4. Hong, K.-O., M.-S. Shu, and D.-K. Rha, 2006, Temporal and Spatial Variations of Precipitation in South Korea for REcent 30 Years (1976-2005) and Geographic Environments. J. Korean Earth Sci. Soc., 27, 433-449.
  5. In, S. R., Han, S. O., Im, E. S., Kim, K. H., and Shim, J., 2014, Study on Temporal and Spatial Characteristics of Summertime Precipitation over Korean Peninsula. Atmosphere, 24.
  6. Inoue, T., 1987, A cloud type classification with NOAA 7 split-window measurements. Journal of Geophysical Research: Atmospheres, 92(D4), 3991-4000. https://doi.org/10.1029/JD092iD04p03991
  7. Johnson, J.T., 1998, The storm cell identification and tracking algorithm: An enhanced WSR-88D algorithm. Weather and Forecasting, 13, 263-276. https://doi.org/10.1175/1520-0434(1998)013<0263:TSCIAT>2.0.CO;2
  8. Joss, J. and A. Waldvogel, 1990, Precipitation measurements and hydrology. Radar in Meteorology, Boston, Amer, Meteor. Soc., 577-606.
  9. Jung, S. H., Lee, G., Kim, H. W., and Kuk, B, 2011, Development of convective cell identification and tracking algorithm using 3-dimensional radar reflectivity fields. Atmosphere, 21(3), 243-256.x
  10. Jung, S. H., and Lee. G., 2015, Radar-based cell tracking with fuzzy logic approach. Meteorol. Appl. 22, 716-730 https://doi.org/10.1002/met.1509
  11. Kidd, C., 2001, Satellite rainfall climatology: a review. International Journal of Climatology, 21(9), 1041-1066. https://doi.org/10.1002/joc.635
  12. Kurino, T., 1997, A rainfall estimation with the GMS-5 infrared split-window and water vapour measurements. Meteorol Center Tech Note, Japan Meteorol Agency, 33, 91-101.
  13. Lee, S.H., 2016, Improvement of convective rainfall rate based on COMS over the Korean Peninsula. Kongju National University, Korea, 53 p.
  14. Lovejoy, S. and Austin, G. L.,1979, The delineation of rain areas from visible and IR satellite data for GATE and mid-latitudes. Atmosphere-ocean, 17(1), 77-92. https://doi.org/10.1080/07055900.1979.9649053
  15. Lu, G. Y. and Wong, D. W., 2008, An adaptive inverse-distance weighting spatial interpolation technique. Computers & Geosciences, 34(9), 1044-1055. https://doi.org/10.1016/j.cageo.2007.07.010
  16. Luque, A., Gomez, I. and Manso, M., 2006, Convective rainfall rate multi-channel algorithm for Meteosat-7 and radar derived calibration matrices. Atmosfera, 19(3), 145-168.
  17. Marquardt, D. W., 1963, An algorithm for least-squares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics, 11(2), 431-441. https://doi.org/10.1137/0111030
  18. Marshall, J. S. and Palmer, W. M., 1948, The distribution of raindrops with size. J. meteor., 5, 154-166.
  19. Moon, Y. S. and Lee, K. Y., 2016, Improvement and Validation of Convective Rainfall Rate Retrieved from Visible and Infrared Image Bands of the COMS Satellite. J. Korean Earth Sci. Soc., v. 37, no. 6, p. 420-433 https://doi.org/10.5467/JKESS.2016.37.7.420
  20. NMSC., 2012, COMS Rainfall Intensity Algorithm Theoretical Basis Documents (RI ATBD), NMSC/SCI/ATBD/RI, 22 p.
  21. Olander, T. L. and Velden, C. S., 2009, Tropical cyclone convection and intensity analysis using differenced infrared and water vapor imagery. Weather and Forecasting, 24(6), 1558-1572. https://doi.org/10.1175/2009WAF2222284.1
  22. Rodriguez, A. and Marcos, C., 2013, Algorithm theoretical basis document for "convective rainfall rate" (CRR-PGE05 v4.0). SAF/NWC/CDOP2/INM/SCI/ATBD/05, 36 pp. [Available online at http://www.nwcsaf.org/scidocs/Documentation/SAF-NWC-CDOP2-INM-SCI-ATBD-05_v4.0.pdf.].
  23. Scofield, R. A., 1987, The ENSDIS operational convective precipitation technique [J]. Monthly Weather Review, 1773-1792.
  24. Scofield, R. A., 2001, Comments on "A quantitative assessment of the NESDIS Auto-Estimator." Wea. Forecasting, 16, 277-278. https://doi.org/10.1175/1520-0434(2001)016<0277:COAQAO>2.0.CO;2
  25. Vicente, G. A., Scofield R. A., and Menzel W. P., 1998, Operational GOES infrared rainfall estimation technique. Bull. Amer. Meteor. Soc. 79, 1883-1897. https://doi.org/10.1175/1520-0477(1998)079<1883:TOGIRE>2.0.CO;2
  26. Vicente, J. C. Davenport and R. A. Scofield., 2002, The role of orographic and paralax corrections on real time high resolution satellite rainfall rate distribution. International Journal of Remote Sensing, Vol. 23, 2, 221-230. https://doi.org/10.1080/01431160010006935
  27. Yoon S.M., 2013, statistical of extreme rainfall events and applications of radar rainfall estimates for reducing flood risk in Gyeongnam area. Kyungsang University, Korea, 183 p.