DOI QR코드

DOI QR Code

Geoacoustic Model at the SSDP-105 Long-core Site of the Ulsan Coastal Area, the East Sea

동해 울산 연안해역 SSDP-105 심부코어 지점의 지음향 모델

  • Ryang, Woo-Hun (Division of Science Education and Institute of Science Education, Chonbuk National University) ;
  • Lee, Gwang-Soo (Korea Institute of Geoscience and Mining Resources (KIGAM)) ;
  • Hahn, Jooyoung (Agency for Defense Development)
  • 양우헌 (전북대학교 과학교육학부/과학교육연구소) ;
  • 이광수 (한국지질자원연구원) ;
  • 한주영 (국방과학연구소)
  • Received : 2018.04.19
  • Accepted : 2018.04.25
  • Published : 2018.04.30

Abstract

Geoacoustic model comprises physical and acoustic properties of submarine bottom layers influencing sound transmission through sea water and underwater. This study suggested for the first time that we made a geoacoustic model of long-coring bottom layers at the SSDP-105 drilling site of the Ulsan coastal area, which is located in the southwestern inner shelf of the East Sea. The geoacoustic model of 52 m depth below seafloor with three-layer geoacoustic units was reconstructed in the coastal sedimentary strata at 79 m in water depth. The geoacoustic model was based on the data of a deep-drilled sediment core of SSDP-105 and sparker seismic profiles in the study area. For actual modeling, the geoacoustic property values of the models were compensated to in situ depth values below the sea floor using the Hamilton modeling method. We suggest that the geoacoustic model be used for geoacoustic and underwater acoustic experiments of mid- and low-frequency reflecting on the deep bottom layers in the Ulsan coastal area of the East Sea.

지음향 모델은 수중과 해저 음파의 전파에 영향을 미치는 해저 지층의 물성과 음향 특성을 포함한다. 이 연구는 동해 남서부 내대륙붕에 위치한 울산 해역의 SSDP-105 시추 지점에서 심부 지층의 지음향 모델을 처음으로 제시하였다. 수심 79 m의 연안 퇴적 지층에서 52 m 심도의 3개 지음향 모델을 구성하였다. 지음향 모델은 연구 해역의 SSDP-105 심부시추 코어 자료와 스파커 탄성파 단면 자료에 근거한다. 실제 모델링을 위해, 모델의 지음향 특성값은 Hamilton 모델링 방법을 이용하여 해저면 하부 현장 심도의 특성값으로 보정하였다. 이 지음향 모델은 동해 울산 연안해역에서 심부 지층의 지음향 특성을 반영하는 중 저주파수 지음향/수중음향 실험을 위해 활용될 것이다.

Keywords

References

  1. Agency for Defense Development (ADD), 2004, Seismic stratigraphy and deep coring in the major harbors, NSDC-408-040241, 76 p.
  2. Ainslie, M.A., 2010, Principles of sonar performance modeling, Springer, Berlin, Germany, 707 p.
  3. Carey, W.M., Doutt, J., Evans, R.B., and Dillman, L.M., 1995, Shallow-water sound transmission measurements on the New Jersey continental shelf. IEEE Journal of Oceanic Engineering, 20, 321-336. https://doi.org/10.1109/48.468247
  4. Chough, S.K., Lee, H.J., and Yoon, S.H., 2000, Marine geology of Korean seas, Elsevier, Amsterdam, 313 p.
  5. Folk, R.L., 1968, Petrology of sedimentary rocks. Hemphill's, Austin, USA, 170 p.
  6. Folk, R.L. and Ward, W.C., 1957, A study in the significance of grain-size parameters. Journal of Sedimentary Petrology, 27, 3-27. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
  7. Hamilton, E.L., 1971, Predictions of in-situ acoustics and elastic properties of marine sediments, Geophysics, 36, 266-284. https://doi.org/10.1190/1.1440168
  8. Hamilton, E.L., 1979, Sound velocity gradients in marine sediments, Journal of Acoustical Society of America, 65, 909-922. https://doi.org/10.1121/1.382594
  9. Hamilton, E.L. 1980, Geoacoustic modeling of the sea floor. Journal of the Acoustical Society of America, 68, 1313-1339. https://doi.org/10.1121/1.385100
  10. Hamilton, E.L., 1987, Acoustic properties of sediments. In Lara-Saenz, A., Ranz-Guerra, C., and Carbo-Fite, C. (eds.), Acoustics and Ocean Bottom. Cosejo Superior de Investigaciones Cientificas, Madrid, Spain, 3-58.
  11. Jackson, D.R. and Richardson, M.D., 2007, High-frequency seafloor acoustics. Springer, New York, USA, 616 p.
  12. Katsnelson, B., Petnikov, V., and Lynch, J., 2012, Fundamentals of shallow water acoustics. Springer, New York, USA, 540 p.
  13. Kim, G.Y., Narantsetseg, B., Lee, J.Y., Chang, T.S., Lee, G.S., Yoo, D.G., and Kim, S.P., 2018, Physical and geotechnical properties of drill core sediments in the Heuksan Mud Belt off SW Korea, Quaternary International, 468, 33-48. https://doi.org/10.1016/j.quaint.2017.06.018
  14. Korea Institute of Geoscience and Mining Resources (KIGAM), 2000, Study on Quaternary stratigraphy and environmental changes in Korean seas (Analyses of SSDP-101, SSDP-102, SSDP-103, SSDP-104, SSDP-105 cores), KR-00(B)-02, 678p.
  15. Korea Institute of Geoscience and Mining Resources (KIGAM), 2012, Marine geological and geophysical mapping of the Korean seas, GP2010-013-2012(3), 344p.
  16. Kwon, Y.K., Yoon, S.H., and Chough, S.K., 2009, Seismic stratigraphy of the western South Korea Plateau, East Sea: implications for tectonic history and sequence development during back-arc evolution. Geo-Marine Letters, 29, 181-189. https://doi.org/10.1007/s00367-009-0133-y
  17. Mackenzie, K.V., 1981, Nine-term equation for sound speed in the oceans, Journal of the Acoustical Society of America, 70, 807-812. https://doi.org/10.1121/1.386920
  18. Ryang, W.H., Kim, S.P., Kim, D.C., and Hahn, J., 2016, Geoacoustic model of coastal bottom strata at Jeongdongjin in the Korean continental margin of the East Sea. The Journal of the Korean Earth Sciences Society, 37, 200-210. https://doi.org/10.5467/JKESS.2016.37.4.200
  19. Ryang, W.H., Kwon, Y.K., Jin, J.H., Kim, H.T., and Lee, C.W., 2007, Geoacoustic velocity of basement and Tertiary successions of the Okgye and Bukpyeong coast, East Sea. The Journal of the Korean Earth Sciences Society, 28, 367-373. https://doi.org/10.5467/JKESS.2007.28.3.367
  20. Ryang, W.H., Kwon, Y.K., Kim, S.P., Kim, D.C., and Choi, J.H., 2014, Geoacoustic model at the DH-1 long-core site in the Korean continental margin of the East Sea. Geosciences Journal, 18, 269-279. https://doi.org/10.1007/s12303-014-0005-y
  21. Zhou, J-X., Zhang, X-Z., Rogers, P.H., and Jarzynski, J., 1987, Geoacoustic parameters in a stratified sea bottom from shallow-water acoustic propagation. Journal of the Acoustical Society of America, 82, 2068-2074. https://doi.org/10.1121/1.395651