본 논문은 시계열자료의 ARMA 모형화를 위해 계층적(Hierarchical) 문제해결 방식인 인공신경망 기초 의상결정트리분류기상의 인공신경망 구조를 개선하여 지역문제(Local Problem)를 해결하는 복수개의 인공신경망 결과를 Dempster's rule of combination을 이용하여 종합하는 병행적인 (Parallel) ARMA 모형활르 위한 방법론을 제시함으로써 의사결정트리분류기에 근거한 방법론의 단점을 보완하였다. 본 논문에서 제시한 ARMA 모형화를 위한 방법론은 세 단계로 구성되어 있다: 1) ESACF 특성 벡터 추출단계; 2) 개별 인공신경망에 의한 부분적 모델링 단계; 3) Conflict Resolution 단계, 제시한 방법론을 검증하기 위해 모의실험용 자료와 실제 시계열자료를 이용하여 제시된 방법론을 검증하였으며 실험결과 기존 연구에 비해 ARMA 모형화와 정확도가 높은 것으로 나타났다.
본 논문에서는 심층 신경망 기반 점진적 다계층 오디오 코덱의 비트 전송률 효율 향상을 위한 엔트로피 모델 기반 양자화 방식을 제안한다. 최근 심층 신경망을 이용하여 전통적인 신호 처리 이론 기반의 상용 오디오 코덱들을 대체하기 위한 오디오 압축 및 복원 시스템에 관한 연구가 활발하게 이루어지고 있다. 그러나 아직은 기존 상용 코덱의 성능에 도달하지 못하고 있으며 특히 종단 간 오디오 압축 모델의 경우, 적은 정보량으로 높은 품질을 얻기 위해서는 부호화기의 양자화 구조를 개선하는 것이 필수적이다. 본 연구에서는 기존에 제안된 종단 간 오디오 압축 모델 중 하나인 점진적 다계층 오디오 코덱의 벡터 양자화기를 엔트로피 모델 기반 양자화기로 대체하고 전송률-왜곡 트레이드오프 관계를 활용하여 전송률을 다양한 형태로 조절할 수 있음을 보임으로써 엔트로피 모델 기반 양자화기 도입의 타당성을 검증한다.
최근 대용량의 데이터베이스로부터 유용한 정보를 발견하고 데이터간에 존재하는 연관성을 탐색하고 분석하는 데이터 마이닝에 관한 많은 연구들이 진행되고 있다. 실제 응용분야에선 수집된 데이터는 시간이 지날수록 데이터의 양이 늘어나게 되고, 중복되는 속성과 잡음을 갖게 되어 마이닝 기법을 이용하는데 많은 시간과 비용이 소요된다. 또한 어느 속성이 중요한지 알 수 없어 중요한 속성이 중요하지 않은 속성에 의해 왜곡되거나 제대로 분석되지 않을 수 있다. 본 연구는 이러한 문제점들을 해결하기 위해 GHSOM을 이용한 계층적 신경망 군집화 방법을 제안한다. 제안하는 방법은 비리 군집의 개수를 정해줄 필요가 없고, 다양한 레벨의 군집들을 얻을 수 있는 계층적 군집화를 이루어낸다는 장점을 갖는다. 본 논문에서는 신경망 GHSOM의 구조와 특성에 대해 간략히 살펴보고 시스템 처리과정에 대해 설명한다.
대규모 병렬처리가 가능하고 칩당 뉴론 집적도가 높은 펄스형 디지털 다계층 신경망 구조를 제안하였다. 제안된 신경망에서는 대수적인 신경망연산이 의사-랜덤 펄스 시퀀스(pseudo-random pulse sequences)와 단순 디지털 논리 게이트를 이용하여 확률적 프로세스로 대치되었다. 확률적 프로세스의 결과로 나타나는 신경망 연산의 통계적 모델을 제시하였으며 이를 바탕으로 랜덤잡음의 영향과 연산의 정확도를 분석하였다. 이진인식 문제를 적용하여 제안된 신경망의 성능을 평가하고 제시한 통계적 분석결과의 정당성을 검증하였다. Gate 레벨과 register transfer 레벨로 기술된 신경망의 VHDL 모델의 시뮬레이션 결과는 개발된 통계적모델로 예측된 인식추정치와 실제 인식률이 거의 일치함을 보였으며, 또한 숫자인식률에 있어서도 일반 Back-Propagation 신경망의 인식률과 거의 차이가 없음을 보였다.
본 논문에서는 지능재어기법을 이용하여 이족로봇 제어기를 설계한다. 이족로봇 제어기는 복잡성을 해결하기 위해 4개 소 그룹으로 모듈화 하고, 이 모듈들은 신경망을 이용한 계층적 모듈라 신경망 (Hierarchical Mixture of Experts; HME) 기법을 도입한다. 그리고 신경망은 직접제어기법으로 이족로봇의 역 동력학을 학습한다. HME는 나무구조의 네트워크로 입출력 집합을 학습하여 출력공간에 대한 입력공간을 재분할하는 능력을 가지고 있다. EM 알고리즘을 이용한 HME는 반복적 학습을 통하여 이족로봇의 동력학을 모델링하며 HME 의 가상오차를 생성하여 이족로봇보행시 안전한 보행을 수행할 수 있는 이족로봇의 제어기를 설계한다.
Deep learning은 많은 수의 계층으로 이루어진 깊은 신경망을 학습하기 위한 연구 분야이다. 지난 수 년 동안 deep learning은 다양한 분야에 적용되어 기존 방법들을 능가하는 높은 성능을 보였으며, 그 결과 기계학습 및 패턴인식 분야에서 가장 중요한 기술적 트랜드가 되어가고 있다. 깊은 신경망의 장점과 그 동안 깊은 신경망의 학습이 어려웠던 이유를 설명하고 이러한 어려움을 극복한 새로운 알고리즘들을 소개한다. 마지막으로 deep learning의 성공적 응용 사례에 대해 소개한다.
텍스트 마이닝(Text Mining)이란 텍스트형태의 문서들의 패턴 또는 관계를 추출하여 사용자가 원하는 새로운 정보를 가공하거나 기존의 정보를 변형하는 과정을 말한다. 텍스트 마이닝의 기능에는 문서 범주화(Document Categorization), 문서 군집화(Document Clustering), 그리고 문서 요약(Document Summarization)이 이에 해당된다. 문서 범주화란 문서에게 사전에 정의한 범주를 부여하는 과정을 말하고, 문서 군집화란 문서들을 계층적 구조로 형성하는 과정을 말하고, 문서 요약이란 문서의 전체 내용을 대표할 수 있는 내용의 일부만을 추출하는 과정을 말한다. 이 논문에서는 문서 범주화만을 다룰 것이며 그 대상으로는 신문기사로 설정하였다. 그의 범주는 4가지로 정치, 경제, 스포츠, 그리고 정보통신으로 설정하였다. 문서 범주화는 문서 분류(Document Classification)라고도 하며 문서에 범주를 자동으로 부여하여 기존에 인위적으로 부여함으로써 소요되는 시간과 비용을 절감하는 것이 목적이다. 문서 범주화에 대하여 k-NN(k-Nearest Neighbor)와 신경망을 이용하였으며, 신경망을 이용한 경우가 k-NN을 이용한 경우보다 성능이 우수하였다.
일반적으로 사람이 패턴인식을 하는 데 있어서 여러 단계의 과정을 거쳐 인식함이 알려져 있다. 이와 같은 사람의 패턴인식 메카니즘(mechanism)을 모방하여 각 단계에 해당하는 기능을 수행하는 시스팀의 구성은 계층구조를 가짐은 물론 각각의 계층의 지식 또한 모듈화 되어야 한다. 특히 계층간의 지식이 상호작용을 통하여 지식이 처리되어야 할 것이다. 본 연구에서는 기존의 패턴인식 모델이 가지고 있는 문제점을 해결하기 위하여 인간의 패턴 인식 메카니즘에 대해 많이 알려진 여러가지 가설을 바탕으로 신경망 패턴인식 모델과 AI 패턴인식 모델을 융합한 새로운 IPP 모델을 제안한다. IPP 모델은 패턴을 인식할때 각 단계에서 생기는 다양성, 애매성 등을 다른 층의 지식을 사용하여 협조적으로 해결하며, 또한 인간처럼 직감적 처리와 논리적 처리를 상호협조적으로 정보를 교환하여 패턴을 인식한다. 즉, IPP 모델은 직감과 논리를 융합한 새로운 패턴인식 모델이다.
실시간으로 발생하는 뉴스 기사로부터 이슈를 분석하기 위한 다양한 연구가 진행되어 왔다. 하지만 범주에 따라 계층적으로 이슈를 분석하는 연구는 많이 진행되지 않았고, 계층적 이슈 분석을 위한 기존의 연구에서 제안하는 방식 또한 뉴스 기사 증가에 따라 군집화 속도가 느려지는 문제점이 있다. 따라서 본 논문에서는 준 실시간으로 뉴스 기사의 이슈를 분석하는 계층적·점증적 군집화 방식을 제안한다. 제안하는 군집화 방식은 샴 신경망을 이용한 가중 코사인 유사도 측정 모델 기반의 k-평균 알고리즘을 이용한 단어 군집 기반 문서 표현 방식을 통해 뉴스 기사를 문서 벡터로 표현한다. 그리고 문서 벡터로부터 초기 이슈 군집 트리를 생성하고, 새로 발생한 뉴스 기사를 해당 이슈 군집 트리에 추가하는 점증적 군집화 방식을 제안함으로써 뉴스 기사의 계층적 이슈를 준 실시간으로 분석한다. 마지막으로, 본 논문에서 제안하는 방식과 기존 방식들과의 성능평가를 통해 제안하는 군집화 방식이 정확도 측면에서 기존 방식 대비 NMI 지표 기준 0.26 정도 성능이 향상되었고, 속도 측면에서 약 10배 이상의 성능이 향상됨을 입증하였다.
문서의 텍스트를 바탕으로 각 문서가 속한 분류를 찾아내는 문서 분류는 자연어 처리의 기본 분야 중 하나로 주제 분류, 감정 분류 등 다양한 분야에 이용될 수 있다. 문서를 분류하기 위한 신경망 모델은 크게 단어를 기본 단위로 다루는 단어 수준 모델과 문자를 기본 단위로 다루는 문자 수준 모델로 나누어진다. 본 논문에서는 문서를 분류하는 신경망 모델의 성능을 향상시키기 위하여 문자 수준과 단어 수준의 모델을 혼합한 신경망 모델을 제안한다. 제안하는 모델은 각 단어에 대하여 문자 수준의 신경망 모델로 인코딩한 정보와 단어들의 정보를 저장하고 있는 단어 임베딩 행렬의 정보를 결합하여 각 단어에 대한 특징 벡터를 만든다. 추출된 단어들에 대한 특징 벡터를 바탕으로, 주의(attention) 메커니즘을 이용한 순환 신경망을 단어 수준과 문장 수준에 각각 적용하는 계층적 신경망 구조를 통해 문서를 분류한다. 제안한 모델에 대하여 실생활 데이터를 바탕으로 한 실험으로 효용성을 검증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.