DNN-based Audio Compression Model Optimization Utilizing Entropy Model

엔트로피 모델을 활용한 심층 신경망 기반 오디오 압축 모델 최적화

  • Published : 2022.06.20

Abstract

본 논문에서는 심층 신경망 기반 점진적 다계층 오디오 코덱의 비트 전송률 효율 향상을 위한 엔트로피 모델 기반 양자화 방식을 제안한다. 최근 심층 신경망을 이용하여 전통적인 신호 처리 이론 기반의 상용 오디오 코덱들을 대체하기 위한 오디오 압축 및 복원 시스템에 관한 연구가 활발하게 이루어지고 있다. 그러나 아직은 기존 상용 코덱의 성능에 도달하지 못하고 있으며 특히 종단 간 오디오 압축 모델의 경우, 적은 정보량으로 높은 품질을 얻기 위해서는 부호화기의 양자화 구조를 개선하는 것이 필수적이다. 본 연구에서는 기존에 제안된 종단 간 오디오 압축 모델 중 하나인 점진적 다계층 오디오 코덱의 벡터 양자화기를 엔트로피 모델 기반 양자화기로 대체하고 전송률-왜곡 트레이드오프 관계를 활용하여 전송률을 다양한 형태로 조절할 수 있음을 보임으로써 엔트로피 모델 기반 양자화기 도입의 타당성을 검증한다.

Keywords

Acknowledgement

본 연구는 한국전자통신연구원 연구운영비지원사업의 일환으로 수행되었음. [22ZH1200, 초실감 입체공간 미디어·콘텐츠 원천기술 연구]