• Title/Summary/Keyword: 계절예측모델

Search Result 174, Processing Time 0.031 seconds

A Development of Summer Seasonal Rainfall and Extreme Rainfall Outlook Using Bayesian Beta Model and Climate Information (기상인자 및 Bayesian Beta 모형을 이용한 여름철 계절강수량 및 지속시간별 극치 강수량 전망 기법 개발)

  • Kim, Yong-Tak;Lee, Moon-Seob;Chae, Byung-Soo;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.655-669
    • /
    • 2018
  • In this study, we developed a hybrid forecasting model based on a four-parameter distribution which allows a simultaneous season-ahead forecasting for both seasonal rainfall and sub-daily rainfall in Han-River and Geum-River basins. The proposed model is mainly utilized a set of time-varying predictors and the associated model parameters were estimated within a Bayesian nonstationary rainfall frequency framework. The hybrid forecasting model was validated through an cross-validatory experiment using the recent rainfall events during 2014~2017 in both basins. The seasonal precipitation results showed a good agreement with the observations, which is about 86.3% and 98.9% in Han-River basin and Geum-River basin, respectively. Similarly, for the extreme rainfalls at sub-daily scale, the results showed a good correspondence between the observed and simulated rainfalls with a range of 65.9~99.7%. Therefore, it can be concluded that the proposed model could be used to better consider climate variability at multiple time scales.

The Data-based Prediction of Police Calls Using Machine Learning (기계학습을 활용한 데이터 기반 경찰신고건수 예측)

  • Choi, Jaehun
    • The Journal of Bigdata
    • /
    • v.3 no.2
    • /
    • pp.101-112
    • /
    • 2018
  • The purpose of the study is to predict the number of police calls using neural network which is one of the machine learning and negative binomial regression, by using the data of 112 police calls received from Chungnam Provincial Police Agency from June 2016 to May 2017. The variables which may affect the police calls have been selected for developing the prediction model : time, holiday, the day before holiday, season, temperature, precipitation, wind speed, jurisdictional area, population, the number of foreigners, single house rate and other house rate. Some variables show positive correlation, and others negative one. The comparison of the methods can be summarized as follows. Neural network has correlation coefficient of 0.7702 between predicted and actual values with RMSE 2.557. Negative binomial regression on the other hand shows correlation coefficient of 0.7158 with RMSE 2.831. Neural network has low interpretability, but an excellent predictability compared with the negative binomial regression. Based on the prediction model, the police agency can do the optimal manpower allocation for given values in the selected variables.

Application of Time-Series Model to Forecast Track Irregularity Progress (궤도틀림 진전 예측을 위한 시계열 모델 적용)

  • Jeong, Min Chul;Kim, Gun Woo;Kim, Jung Hoon;Kang, Yun Suk;Kong, Jung Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.331-338
    • /
    • 2012
  • Irregularity data inspected by EM-120, an railway inspection system in Korea includes unavoidable incomplete and erratic information, so it is encountered lots of problem to analyse those data without appropriate pre-data-refining processes. In this research, for the efficient management and maintenance of railway system, characteristics and problems of the detected track irregularity data have been analyzed and efficient processing techniques were developed to solve the problems. The correlation between track irregularity and seasonal changes was conducted based on ARIMA model analysis. Finally, time series analysis was carried out by various forecasting model, such as regression, exponential smoothing and ARIMA model, to determine the appropriate optimal models for forecasting track irregularity progress.

Development and application of dam inflow prediction method using Bayesian theory (베이지안 이론을 활용한 댐 유입량 예측기법 개발 및 적용)

  • Kim, Seon-Ho;So, Jae-Min;Kang, Shin-Uk;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.87-87
    • /
    • 2017
  • 최근 이상기후로 인해 국내 가뭄피해가 증가하고 있는 추세이며, 미래 가뭄의 심도 및 지속시간은 증가할 것으로 예측되고 있다. 특히 우리나라는 용수공급의 56.5%를 댐에 의존하여 댐 유역의 가뭄은 생 공 농업용수 공급제한 등의 광범위한 피해를 발생시킬 수 있다. 다만 가뭄은 홍수와 달리 진행속도가 비교적 느리기 때문에 사전에 정확한 댐 유입량 예측이 가능하다면, 용수공급량 조정을 통해 피해를 최소화할 수 있다. 국내에서는 댐 유입량 예측에 ESP (Ensemble Streamflow Prediction) 기법을 활용하고 있으며, ESP 기법은 과거 기상자료를 기반으로 미래를 예측하기 때문에 기상자료, 초기수문조건, 매개변수 등에 불확실성을 가지고 있다. 본 연구에서는 베이지안 이론을 이용하여 댐 예측유입량의 정확도 향상기법을 개발하고 예측성을 평가하고자 하며, 강우유출모델은 ABCD를 활용하였다. 대상유역은 국내의 대표 다목적댐인 충주댐 유역을 선정하였으며, 기상자료는 기상청, 국토교통부 및 한국수자원공사의 지점자료를 수집하였다. 예측성 평가기법으로는 도시적 분석방법인 시계열 분석, 통계적 분석방법인 Skill Score (SS)를 활용하였다. 시계열 분석 결과 ESP 댐 예측유입량(ESP)은 매년 월별 전망값의 큰 차이가 없었으며, 다우년 및 과우년의 예측성이 떨어지는 것으로 나타났다. 베이지안 기반의 댐 예측유입량(BAYES-ESP)는 ESP의 과소모의하는 경향을 보정하였으며, 다우년에 예측성이 향상되었다. 월별 평균 댐 관측유입량과 ESP, BAYES-ESP의 SS 비교분석 결과 ESP는 유입량 값이 적은 1, 2, 3월에 SS가 양의 값을 가졌으며, 이외의 월에는 음의 값으로 나타났다. BAYES-ESP는 ESP와 관측값이 비교적 선형관계를 나타내는 1, 2, 3월에 ESP의 예측성을 개선시키는 것으로 나타났다. ESP 기법은 강수량의 월별, 계절별 변동성이 큰 우리나라에 적용하기에는 예측성의 한계가 있었으며, 이를 개선한 BAYES-ESP 기법은 댐 유입량 예측 연구에 가치가 있는 것으로 판단된다.

  • PDF

Continuity Simulation and Trend Analysis of Water Qualities in Incoming Flows to Lake Paldang by Log Linear Models (로그선형모델을 이용한 팔당호 유입지류 수질의 연속성 시뮬레이션과 경향 분석)

  • Na, Eun-Hye;Park, Seok-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.336-343
    • /
    • 2003
  • Two types of statistical models, simple and multivariate log linear models, were studied for continuity simulation and trend analysis of water qualities in incoming flows to Lake Paldang. Water quality is a function of one independent variable (flow) in the simple log linear model, and of three different variables (flow, time, and seasonal cycle) in multivariate model. The independent variables act as surrogate variables of water quality in both models. The model coefficients were determined by the monthly data. The water qualities included 5-day Biochemical Oxygen Demand ($BOD_5$), Total Nitrogen (TN), and Total Phosphorus (TP) measured from 1995 to 2000 in the South and the North branches of Han River and the Kyoungan Stream. The results indicated that the multivariate model provided better agreements with field measurements than the simple one in a31 attempted cases. Flow dependency, seasonality, and temporal trends of water quality were tested on the determined coefficients of the multivariate model. The test of flow dependency indicated that BOD concentrations decreased as the water flow increased. In TN and TP concentrations, however, there were no discernible flow effects. From the temporal trend analyses, the following results were obtained: 1) no trends on BOD at all three upstreams, 2) increase on TN at the South Branch and the Kyoungan Stream, 3)decrease on TN at the North Branch,4) no trends on TP at the North and the South Branches and 5) increase on TP at the Kyoungan Stream by 3 to 8% per years. The seasonality test showed that there were significant seasonal variations in all three water qualities at three incoming flows.

An Energy Consumption Prediction Model for Smart Factory Using Data Mining Algorithms (데이터 마이닝 기반 스마트 공장 에너지 소모 예측 모델)

  • Sathishkumar, VE;Lee, Myeongbae;Lim, Jonghyun;Kim, Yubin;Shin, Changsun;Park, Jangwoo;Cho, Yongyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.5
    • /
    • pp.153-160
    • /
    • 2020
  • Energy Consumption Predictions for Industries has a prominent role to play in the energy management and control system as dynamic and seasonal changes are occurring in energy demand and supply. This paper introduces and explores the steel industry's predictive models of energy consumption. The data used includes lagging and leading reactive power lagging and leading current variable, emission of carbon dioxide (tCO2) and load type. Four statistical models are trained and tested in the test set: (a) Linear Regression (LR), (b) Radial Kernel Support Vector Machine (SVM RBF), (c) Gradient Boosting Machine (GBM), and (d) Random Forest (RF). Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) are used for calculating regression model predictive performance. When using all the predictors, the best model RF can provide RMSE value 7.33 in the test set.

Development and Verification of Smart Greenhouse Internal Temperature Prediction Model Using Machine Learning Algorithm (기계학습 알고리즘을 이용한 스마트 온실 내부온도 예측 모델 개발 및 검증)

  • Oh, Kwang Cheol;Kim, Seok Jun;Park, Sun Yong;Lee, Chung Geon;Cho, La Hoon;Jeon, Young Kwang;Kim, Dae Hyun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.152-162
    • /
    • 2022
  • This study developed simulation model for predicting the greenhouse interior environment using artificial intelligence machine learning techniques. Various methods have been studied to predict the internal environment of the greenhouse system. But the traditional simulation analysis method has a problem of low precision due to extraneous variables. In order to solve this problem, we developed a model for predicting the temperature inside the greenhouse using machine learning. Machine learning models are developed through data collection, characteristic analysis, and learning, and the accuracy of the model varies greatly depending on parameters and learning methods. Therefore, an optimal model derivation method according to data characteristics is required. As a result of the model development, the model accuracy increased as the parameters of the hidden unit increased. Optimal model was derived from the GRU algorithm and hidden unit 6 (r2 = 0.9848 and RMSE = 0.5857℃). Through this study, it was confirmed that it is possible to develop a predictive model for the temperature inside the greenhouse using data outside the greenhouse. In addition, it was confirmed that application and comparative analysis were necessary for various greenhouse data. It is necessary that research for development environmental control system by improving the developed model to the forecasting stage.

Estimating Monthly Tourist Population for Analysis of Green Tourism Potential in Village Level - A Case Study of Hahoe Village - (그린투어리즘 포텐셜 분석을 위한 관광마을 수준의 월별 방문객 추정 - 하회마을을 중심으로 -)

  • Gao, Yujie;Kim, Dae-Sik;Kim, Yong-Hoon
    • Journal of Korean Society of Rural Planning
    • /
    • v.17 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • 본 연구에서는 ARIMA(Autoregressive Integrated Moving Average) 모델을 이용하여 농촌관광마을의 월별 관광객을 추정하였다. 단일 마을에 대한 시계열 자료를 경상북도 안동시에 위치한 하회마을을 대상으로 구축하였다. 월별 시계열 자료는 2000년부터 2010년까지 구성되었는데(2008년도 누락), 2000년에서 2007년까지 자료는 최적 모델의 도출에 나머지는 예측치의 검정에 사용되었다. 연구 결과 최적모델에 필요한 시계열 자료의 길이는 6년으로 나타났으며, 최적모델은 계절성을 고려한 SARIMA(2,1,1)(1,1,2)12로 나타났다. 최적 시계열 년수로 나타난 6년을 사용하여 2000-2005, 2001-2006, 그리고 2002-2007의 자료로부터 각각 SARIMA(2,1,1)(1,1,2)12를 도출하여, 차기년도들에 대한 예측결과를 비교한 결과, 높은 $R^2$값을 보였다.

Projection of future hydrometeorological change scenarios over Republic of Korea using a dynamical downscaling technique (역학적 상세화 기법을 활용한 우리나라 미래 수문기상변화 시나리오 전망)

  • Shin, Jin-Ho;Lee, Hyo-Shin;Kwon, Won-Tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.258-262
    • /
    • 2010
  • 지역기후모델 RegCM3 이용하여 역학적 상세화 이중둥지격자체계를 구축하고 관측, ECHO-G/S의 20C3M 및 SRES A2 시나리오를 이용하여 동아시아(60km 분해능)와 한반도(20km 분해능)에 대한 현재 및 미래 (1971-2100, 130년)의 기후변화 시나리오 자료를 생산하여 구축하였다. 현재 1971-2000년 기간 동안 상세화된 기온은 관측에 대해 저온 편의와 여름 강수는 건조 편의가 나타나는 계통오차가 있으나, 상세화된 자료는 한반도의 지형적 특성이 잘 반영되었고 관측의 월별, 계절별 변동성을 유사하게 모의하는 등 재분석 자료를 성공적으로 상세화한 것으로 판단된다. 미래 100년(2001-2100년)에 대해 전반기(2021-2050) 및 후반기(2070-2099)의 시나리오기후변동을 분석한 결과, 상세화된 지역별, 계절별, 연도별 기온 상승의 시 공간적 분포를 잘 보여주며, 기온상승(전반기: 동아시아지역~$1.8^{\circ}C$, 남한~$1.6^{\circ}C$, 후반기: 동아시아지역~$4.7^{\circ}C$, 남한~$4.6^{\circ}C$)에 의한 대기 중 수증기 함유량 증가와 여름 몬순의 강화로 전계절에 대해 강수량(전반기: 동아시아~10.5%, 남한~6.7%, 후반기: 동아시아~20.1%, 남한~31.9%)이 증가할 것으로 전망되었다. 수문기상 변화를 살펴보면, 미래 후반기에 남한은 $4.6^{\circ}C$가 상승하여 적설깊이는 5.3mm(-92.3%)가 감소할 것이고, 강수량의 연변동성을 크나 전체적으로 증가할 것이며, 토양수분, 증발산 또한 강수량 증가와 연관되어 증가할 것으로 전망되었다. 이렇게 ECHO-G/S SRES A2 시나리오를 기반으로 하여 역학적으로 상세화된 시나리오는 통계적으로 상세화된 시나리오 결과와 비교 검증함으로써 다중모델기법에 의해 불확실성을 제시함으로써 수문기상변화 예측을 위한 신뢰성 있는 자료로 활용될 수 있을 것으로 판단된다.

  • PDF

Development of a Technique for Estimating Ground Water Level Using Daily Precipitation Data (일강우자료를 활용한 지하수위 예측기법 개발)

  • Park, Jae-Hyeon;Choi, Young-Sun;Park, Chang-Kun;Yang, Jung-Suk;Booh, Seong-An
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.189-193
    • /
    • 2006
  • 대체용수원의 개발이 시급하게 대두되어지고 있는 가운데 제한된 수자원을 보다 효과적으로 사용하기 위한 하나의 방법으로 지하댐(Groundwater Dam) 건설을 이용한 지하수 자원의 개발이 하나의 방법으로 제안되었다. 하지만 해안지역에 설치된 지하댐을 운영할 경우 지하수위 변동에 따른 염수의 침입을 고려하여 운영하여야 한다. 특히 갈수시는 지하수위 하강이 강하게 나타나는 시기로 지하수위는 지하댐 최적운영을 위한 중요한 지표가 된다. 특히 강우량 자료를 활용한 가뭄지수와 지하수위의 관계를 설명 할 수 있다면 예상 강우자료를 활용한 장래의 지하수위를 예측 할 수 있으며 이것은 지하댐 운영에 매우 효과적으로 활용 할 수 있을 것이다. 본 연구에서는 기존의 강우와 예상 강우 자료를 활용하여 지하수위 예측기법을 개발하였다. 과거 강수량의 일이동 평균값을 바탕으로 한 다항 회귀모델을 수립하여, 계절적 특성을 고려한 구간을 분리하여 적용하였다. 예측된 지하수위의 정확성을 알아보기 위해 관측된 지하수위와 예측된 지하수위를 비교 분석하였다. 분석 결과 단순회귀기법을 지하수위를 예측한 경우 $0.62{\sim}0.63$의 상관계수를 보인반면 다항회귀기법을 적용한 결과 $0.62{\sim}0.84$로 상관계수가 증가하였다. 대체적으로 관측된 지하수위와 예측된 지하수위는 비슷한 경향을 보였다. 따라서 지하댐 운영에 있어 최적의 취수량을 개발하기위해 일강우자료를 활용한 지하수위 예측기법의 활용성은 매우 높은 것으로 판단된다.

  • PDF