For forecasting air cargo demand from Incheon National Airport to all of airports in the United States (US), this study employed the Seasonal Autoregressive Integrated Moving Average (SARIMA) method and the time-series data collected from the first quarter of 2003 to the second quarter of 2016. By comparing the SARIMA method against the ARIMA method, it was found that the SARIMA method performs well, relatively with time series data highlighting seasonal periodic characteristics. While existing previous research was generally focused on the air passenger and the air cargo as a whole rather than specific air routes, this study emphasized on a specific air cargo demand to the US route. The meaningful findings would support the future research.
Proceedings of the Korea Water Resources Association Conference
/
2010.05a
/
pp.1395-1399
/
2010
최근 들어 전 세계적으로 태풍과 가뭄 그리고 국지적인 호우 등의 기상변화로 인하여 수자원 종합적인 개발과 이용계획에 대한 전문적인 예측이 필요하다. 우리나라는 홍수기에 집중적인 강우 발생으로 인하여 평수기와 유입량 차이가 심한 수문특성을 가지고 있어 안정적인 수자원 공급에 대한 장기적인 관점에서 이수와 치수정책을 수립해야 한다. 본 연구는 1985년 1월부터 2008년 12월까지 24년에 해당하는 한정된 기간의 짧은 유출량 자료를 갖는 대청댐 유역에서의 시계열 유입량 특성을 Box-Jenkins모형 또는 ARIMA모형을 적용하여 추계학적 분석을 실시하였다. 월유입량과 같은 비정상성 시계열에 적용될 수 있는 적절한 추계학적 모형을 찾기 위하여 모형의 식별과 모형의 추정, 모형의 검진 등의 3단계에 걸친 분석을 실시하였다. 연구결과 대청댐 월유입량 예측모형으로 승법계절 ARIMA$(0,1,2){\times}(1,1,0)_{12}$이 유도되었으며, 이 모형으로 1, 3, 6, 12개월의 선행기간에 대한 실시간 유입량을 예측하였다. 예측된 유입량을 2008년 실측유입량과 비교한 결과 6개월에 대한 예측의 정확성이 가장 높게 나타났다. 또한 평수기와 홍수기를 구분한 예측도 실시하였으며, 평수기는 1개월 홍수기는 3개월 간격으로 예측하는 것이 가장 적절한 것으로 분석되었다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.12
/
pp.1756-1761
/
2021
Although the COVID-19 outbreak that occurred in Wuhan, Hubei around December 2019, seemed to be gradually decreasing, it was gradually increasing as of November 2020 and June 2021, and estimated confirmed cases were 192 million worldwide and approximately 184 thousand in South Korea. The Central Disaster and Safety Countermeasures Headquarters have been taking strong countermeasures by implementing level 4 social distancing. However, as the highly infectious COVID-19 variants, such as Delta mutation, have been on the rise, the number of daily confirmed cases in Korea has increased to 1,800. Therefore, the number of cumulative confirmed COVID-19 cases is predicted using ARIMA algorithms to emphasize the severity of COVID-19. In the process, differences are used to remove trends and seasonality, and p, d, and q values are determined and forecasted in ARIMA using MA, AR, autocorrelation functions, and partial autocorrelation functions. Finally, forecast and actual values are compared to evaluate how well it was forecasted.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.1
/
pp.58-63
/
2022
The daily number of confirmed cases of Coronavirus disease 2019(COVID-19) ranges between 1,000 and 2,000. Despite higher vaccination rates, the number of confirmed cases continues to increase. The Mu variant of COVID-19 reported in some countries by WHO has been identified in Korea. In this study, we predicted the number of confirmed COVID-19 cases in Korea using the SARIMA for the Covid-19 prevention strategy. Trends and seasonality were observed in the data, and the ADF Test and KPSS Test was used accordingly. Order determination of the SARIMA(p,d,q)(P, D, Q, S) model helped in extracting the values of p, d, q, P, D, and Q parameters. After deducing the p and q parameters using ACF and PACF, the data were transformed and schematized into stationary forms through difference, log transformation, and seasonality removal. If seasonality appears, first determine S, then SARIMA P, D, Q, and finally determine ARIMA p, d, q using ACF and PACF for the order excluding seasonality.
Hydrological system forecasting, which is the short term runoff historical data during the limited period in dam site, is a conditional precedent of hydrological persistence by stochastic analysis. We have forecasted the monthly hydrological system from Andong dam basin data that is the rainfall, evaporation, and runoff, using the seasonal ARIMA (autoregressive integrated moving average) model. Also we have conducted long term runoff simulations through the forecasted results of TANK model and ARIMA+TANK model. The results of analysis have been concurred to the observation data, and it has been considered for application to possibility on the stochastic model for dam inflow forecasting. Thus, the method presented in this study suggests a help to water resource mid- and long-term strategy establishment to application for runoff simulations through the forecasting variables of hydrological time series on the relatively short holding runoff data in an object basins.
The seasonal adjustment is an essential process in analyzing the time series of economy and business. One of the powerful adjustment methods is X11-ARIMA Model which is popularly used in Korea. This method was delivered from Canada. However, this model has been developed to be appropriate for Canadian and American environment. Therefore, we need to review whether the X11-ARIMA Model could be used properly in Korea. In this study, we have applied the method to the annual sales of refrigerator sales in A electronic company. We appreciated the adjustment by result analyzing the time series components such as seasonal component, trend-cycle component, and irregular component, with the proposed method. Additionally, in order to improve the result of seasonal adjusted time series, we suggest the demand forecasting method base on autocorrelation and seasonality with the X11-ARIMA PROC.
Recently, since responding to meteorological changes depending on increasing greenhouse gas and electricity demand, the importance prediction of photovoltaic power (PV) is rapidly increasing. In particular, the prediction of PV power generation may help to determine a reasonable price of electricity, and solve the problem addressed such as a system stability and electricity production balance. However, since the dynamic changes of meteorological values such as solar radiation, cloudiness, and temperature, and seasonal changes, the accurate long-term PV power prediction is significantly challenging. Therefore, in this paper, we propose PV power prediction model based on deep learning that can be improved the PV power prediction performance by learning to use meteorological and seasonal information. We evaluate the performances using the proposed model compared to seasonal ARIMA (S-ARIMA) model, which is one of the typical time series methods, and ANN model, which is one hidden layer. As the experiment results using real-world dataset, the proposed model shows the best performance. It means that the proposed model shows positive impact on improving the PV power forecast performance.
Up to now Permanent traffic volumes have been counted by Automatic Vehicle Classification (AVC) on National Highways. When counted data have missing items or errors, the data must be revised to stay statistically reliable This study was carried out to estimate correct data based on outoregression and seasonal AutoRegressive Integrated Moving Average (ARIMA). As a result of verification through seasonal ARIMA, the longer the missed period is, the greater the error. Autoregression results in better verification results than seasonal ARIMA. Traffic data is affected by the present state mote than past patterns. However. autoregression can be applied only to the cases where data include similar neighborhood patterns and even in this case. the data cannot be corrected when data are missing due to low qualify or errors Therefore, these data shoo)d be corrected using past patterns and seasonal ARIMA when the missing data occurs in short periods.
This study is on forecasting the electricity consumption of an industrial manufacturing building called GGM from January 2014 to April 2017. We fitted models using SARIMA, SARIMA + GARCH, Holt-Winters method and ARIMA with Fourier transformation. We also forecasted electricity consumption for one month ahead and compared the predicted root mean square error as well as the predicted error rate of each model. The electricity consumption of GGM fluctuates weekly and annually; therefore, SARIMA + GARCH model considering both volatility and seasonality, shows the best fit and prediction.
This study predicted Port trade volume by considering Korea's export to China and import Com China separately using ARIMA model (Multiplicative Seasonal ARIMA Model). We predicted monthly Port trade volumes for 27 months from October 2008 to December 2010 using monthly data from September 2008 to January 2001 using monthly data. As a result of prediction, we found that the export volume decreased in January, February, August and September while the import volume decreased in February, March, August and September. As the decrease period was clearly differentiated, it was possible to predict export and import volumes. Therefore, it is believed that the results of this study will generate useful basic data for policy makers or those working for export and import enterprises when they set up policies and management plans. And to improve competitive power of Port trade, this study suggests privatization of Port, improvement of information capability, improvement of competitive power of Port management companies, support for Port distribution companies, plans for active encouragement of transshipment, and management of added value creation policy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.