• Title/Summary/Keyword: 계산 기하학

Search Result 207, Processing Time 0.027 seconds

Association Analysis of Product Sales using Sequential Layer Filtering (순차적 레이어 필터링을 이용한 상품 판매 연관도 분석)

  • Sun-Ho Bang;Kang-Hyun Lee;Ji-Young Jang;Tsatsral Telmentugs;Kwnag-Sup Shin
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.213-224
    • /
    • 2022
  • In logistics and distribution, Market Basket Analysis (MBA) is used as an important means to analyze the correlation between major sales products and to increase internal operational efficiency. In particular, the results of market basket analysis are used as important reference data for decision-making processes such as product purchase prediction, product recommendation, and product display structure in stores. With the recent development of e-commerce, the number of items handled by a single distribution and logistics company has rapidly increased, And the existing analytical methods such as Apriori and FP-Growth have slowed down due to the exponential increase in the amount of calculation and applied to actual business. There is a limit to examining important association rules to overcome this limitation, In this study, at the Main-Category level, which is the highest classification system of products, the utility item set mining technique that can consider the sales volume of products together was used to first select a group of products mainly sold together. Then, at the sub-category level, the types of products sold together were identified using FP-Growth. By using this sequential layer filtering technique, it may be possible to reduce the unnecessary calculations and to find practically usable rules for enhancing the effectiveness and profitability.

Upper Boundary Line Analysis of Rice Yield Response to Meteorological Condition for Yield Prediction I. Boundary Line Analysis and Construction of Yield Prediction Model (최대경계선을 이용한 벼 수량의 기상반응분석과 수량 예측 I. 최대경계선 분석과 수량예측모형 구축)

  • 김창국;이변우;한원식
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.3
    • /
    • pp.241-247
    • /
    • 2001
  • Boundary line method was adopted to analyze the relationships between rice yield and meteorological conditions during rice growing period. Boundary lines of yield responses to mean temperature($T_a$) and sunshine hour( $S_{h}$) and diurnal temperature range($T_r$) were well-fitted to hyperbolic functions of f($T_a$) =$$\beta$_{0t}$(1-EXP(-$$\beta$_{1t}$ $\times$ ($T_a$) ) and f( $S_{h}$)=$$\beta$_{0t}$((1-EXP($$\beta$_{1t}$$\times$ $S_{h}$)), to quadratic function of f($T_r$) =$\beta$$_{0r}$(1-($T_r$ 1r)$^2$), respectively. to take into account to, the sterility caused by low temperature during reproductive stage, cooling degree days [$T_c$ =$\Sigma$(20-$T_a$] for 30 days before heading were calculated. Boundary lines of yield responses to $T_c$ were fitted well to exponential function of f($T_c$) )=$\beta$$_{0c}$exp(-$$\beta$_{1c}$$\times$$T_c$ ). Excluding the constants of $\beta$$_{0s}$ from the boundary line functions, formed are the relative function values in the range of 0 to 1. And these were used as yield indices of the meteorological elements which indicate the degree of influence on rice yield. Assuming that the meteorological elements act multiplicatively and independently from each other, meteorological yield index (MIY) was calculated by the geometric mean of indices for each meteorological elements. MIY in each growth period showed good linear relationship with rice yield. The MIY's during 31 to 45 days after transplanting(DAT) in vegetative stage, during 30 to 16 days before heading (DBH) in reproductive stage and during 20 days after heading (DAH) in ripening stage showed greater explainablity for yield variation in each growth stage. MIY for the whole growth period was calculated by the following three methods of geometric mean of the indices for vegetative stage (MIVG), reproductive stage (HIRG) and ripening stage (HIRS). MI $Y_{I}$ was calculated by the geometric mean of meteorological indices showing the highest determination coefficient n each growth stage of rice. That is, (equation omitted) was calculated by the geometric mean of all the MIY's for all the growth periods devided into 15 to 20 days intervals from transplanting to 40 DAH. MI $Y_{III}$ was calculated by the geometric mean of MIY's for 45 days of vegetative stage (MIV $G_{0-45}$ ), 30 days of reproductive stage (MIR $G_{30-0}$) and 40 days of ripening stage (MIR $S_{0-40}$). MI $Y_{I}$, MI $Y_{II}$ and MI $Y_{III}$ showed good linear relationships with grain yield, the coefficients of determination being 0.651, 0.670 and 0.613, respectively.and 0.613, respectively.

  • PDF

Adequacy of Source to Image Receptor Distance with Chest Postero-Anterior Projection in Digital Radiology System (디지털방사선 환경에서 흉부 후-전 방향 검사 시 초점과 영상수용체간 거리의 적절성)

  • Joo, Young-Cheol;Lim, Cheong-Hwan;You, In-Gyu;Jung, Hong-Ryang;Lee, Sang-Ho
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.135-142
    • /
    • 2016
  • The purpose of this study is to evaluate propriety of using SID 180cm at Chest PA examination and to find effect of geometrical cause to the image. XGEO-GC80, INNOVISION-SH, CXDI-40EG detector and a chest phantom designed self-production was used for this study. Images were acquired at SID 180cm with changing the factor OID as 0, 75 and 83mm and were analyzed by Centricity Radiography RA1000 PACS system. Statistical program was used the SPSS (Version 22.0, SPSS, Chicago, IL, USA), p-value(under 0.05) was considered to be statistically significant. In OID 0 mm was enlarged about 2.7~3.5 mm than the actual degree of the HS, BS of phantom in all equipments. Compared with the calculated magnification has been expanded 1.6~2.8% when viewed. The OID 75 mm with OID 83 mm was extended from the CS and BS 6~8 mm range. Compared to the calculated values, the measured values are expanded from 6.1 to 7.9%. CS and BS according to the OID change showed a statistically significant difference (p<0.05) among each group, the post-analysis only OID 0 mm group appeared as an independent group, 75 mm and 83 mm are separated in the same group It was. But had no statistically significant difference could change depending on the OID (p>0.05), post-mortem analysis showed, both in the same group. Heart sizes appears larger than actual size 6~8 mm at chest PA examination which is enlarged 6.1~7.9% more than the actual theoretical value. We can find magnification of the image because of the increase of the OID due to technical limitations between cover of standing detector and the image plate. so we suggest to have occurred between them when considering the need to adjust the equipment installed by the SID to match the characteristics of the equipment.

Correction of positional change of frontal cephalometric landmarks caused by vertical head rotation (두부의 수직회전 시 정모두부방사선사진상의 계측점 변화와 이의 보정)

  • Kim, Mi-Young;Lee, Kyung-Min;Cho, Jin-Hyoung;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.41 no.2
    • /
    • pp.98-111
    • /
    • 2011
  • Objective: Superimposition of frontal cephalograms cannot be performed when the cephalograms are taken with different vertical head rotations. The purpose of the present study was to evaluate the validity of correcting the positional change of frontal cephalometric landmarks caused by vertical head rotation. Methods: In 30 adult individuals, frontal and lateral cephalograms were taken at a $90^{\circ}$ angle. Geometric principles of radiography were used to calculate the possible vertical and horizontal landmark changes if the head should be rotated down $5^{\circ}$ about an ear rod axis. The calculated changes were then compared with cephalometric changes measured on frontal cephalogram actually taken with the head rotated down $5^{\circ}$. Results: When the frontal cephalograms were taken with the head rotated down $5^{\circ}$ about an ear rod axis, significant changes in the vertical position of the landmarks occurred, particularly in the landmarks located farther anteriorly from the ear rod axis. The comparison of calculated changes and real cephalometric changes showed that the differences were less than 0.4 mm in the vertical direction and less than 0.2 mm in the horizontal direction. The differences between calculated and real changes were smaller in the landmarks less affected by vertical head rotation. Conclusions: Even when frontal cephalograms are taken at different vertical head rotations, the concomitant changes in the position of the landmarks can be corrected through calculation using the geometric principle of radiography as long as frontal and lateral cephalograms are taken perpendicular to each other.

The Study of Land Surface Change Detection Using Long-Term SPOT/VEGETATION (장기간 SPOT/VEGETATION 정규화 식생지수를 이용한 지면 변화 탐지 개선에 관한 연구)

  • Yeom, Jong-Min;Han, Kyung-Soo;Kim, In-Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.111-124
    • /
    • 2010
  • To monitor the environment of land surface change is considered as an important research field since those parameters are related with land use, climate change, meteorological study, agriculture modulation, surface energy balance, and surface environment system. For the change detection, many different methods have been presented for distributing more detailed information with various tools from ground based measurement to satellite multi-spectral sensor. Recently, using high resolution satellite data is considered the most efficient way to monitor extensive land environmental system especially for higher spatial and temporal resolution. In this study, we use two different spatial resolution satellites; the one is SPOT/VEGETATION with 1 km spatial resolution to detect coarse resolution of the area change and determine objective threshold. The other is Landsat satellite having high resolution to figure out detailed land environmental change. According to their spatial resolution, they show different observation characteristics such as repeat cycle, and the global coverage. By correlating two kinds of satellites, we can detect land surface change from mid resolution to high resolution. The K-mean clustering algorithm is applied to detect changed area with two different temporal images. When using solar spectral band, there are complicate surface reflectance scattering characteristics which make surface change detection difficult. That effect would be leading serious problems when interpreting surface characteristics. For example, in spite of constant their own surface reflectance value, it could be changed according to solar, and sensor relative observation location. To reduce those affects, in this study, long-term Normalized Difference Vegetation Index (NDVI) with solar spectral channels performed for atmospheric and bi-directional correction from SPOT/VEGETATION data are utilized to offer objective threshold value for detecting land surface change, since that NDVI has less sensitivity for solar geometry than solar channel. The surface change detection based on long-term NDVI shows improved results than when only using Landsat.

A Study on the Equations of Estimating the Leaf Area of Broad-Leaf Species in Mt. Jiri (지리산(智異山) 주요(主要) 활엽수종(闊葉樹種)의 엽면적(葉面積) 추정식(推定式)에 대(對)한 연구(硏究))

  • Kim, Si Kyung;Lee, Kyeong Hack
    • Journal of Korean Society of Forest Science
    • /
    • v.70 no.1
    • /
    • pp.103-108
    • /
    • 1985
  • This paper is concerned with estimating equations of leaf area(A) obtained from linear measurements - leaf length(L) and leaf width(W) - on the leaves of 13 species composing a natural mixed stand in Mt. Jiri. This method is known to be rapid and non-destructive in estimating leaf area. The equation of A=bLW is frequently used in rough and rapid estimation. Each species in this study has its own coefficient b according to its geometrical leaf shape. The range of coefficients of 13 species was 0.579 to 0.717. This means that the relationship A=2/3LW is suitable to most broad leaf species in a natural mixed stand in Mt. Jiri. When more precise estimation of leaf area is needed, full regression equation is used. In this study, the form of ${\log}A=b_0+b_1{\log}LW$ was the most precise estimation equation in 8 species. In addition to this, the form of $A=b_0+b_1LW$ and $A=b_0+b_1L^2+b_2W^2$ were founded to be suitable for estimation of leaf area. In comparision of these two forms, the determination coefficient were about the same, but the F-value of the former was greater than that of the latter. Therefore, the use of the former seems to be more reliable and practical.

  • PDF

Verification of Non-Uniform Dose Distribution in Field-In-Field Technique for Breast Tangential Irradiation (유방암 절선조사 시 종속조사면 병합방법의 불균등한 선량분포 확인)

  • Park, Byung-Moon;Bae, Yong-Ki;Kang, Min-Young;Bang, Dong-Wan;Kim, Yon-Lae;Lee, Jeong-Woo
    • Journal of radiological science and technology
    • /
    • v.33 no.3
    • /
    • pp.277-282
    • /
    • 2010
  • The study is to verify non-uniform dose distribution in Field-In-Field (FIF) technique using two-dimensional ionization chamber (MatriXX, Wellhofer Dosimetrie, Germany) for breast tangential irradiation. The MatriXX and an inverse planning system (Eclipse, ver 6.5, Varian, Palo Alto, USA) were used. Hybrid plans were made from the original twenty patients plans. To verify the non-uniform dose distribution in FIF technique, each portal prescribed doses (90 cGy) was delivered to the MatriXX. The measured doses on the MatriXX were compared to the planned doses. The quantitative analyses were done with a commercial analyzing tool (OmniPro IMRT, ver. 1.4, Wellhofer Dosimetrie, Germany). The delivered doses at the normalization points were different to average 1.6% between the calculated and the measured. In analysis of line profiles, there were some differences of 1.3-5.5% (Avg: 2.4%), 0.9-3.9% (Avg: 2.5%) in longitudinal and transverse planes respectively. For the gamma index (criteria: 3 mm, 3%) analyses, there were shown that 90.23-99.69% (avg: 95.11%, std: 2.81) for acceptable range ($\gamma$-index $\geq$ 1) through the twenty patients cases. In conclusion, through our study, we have confirmed the availability of the FIF technique by comparing the calculated with the measured using MatriXX. In the future, various clinical applications of the FIF techniques would be good trials for better treatment results.