• Title/Summary/Keyword: 계면 전단강도

Search Result 240, Processing Time 0.022 seconds

Effect of tribochemical silica coating on the shear bond strength of rebonded monocrystalline ceramic brackets (단결정형 세라믹 브라켓의 재접착 시 tribochemical silica coating이 전단접착강도에 미치는 영향)

  • Jeon, Young-Mi;Son, Woo-Sung;Kang, Sang-Wook
    • The korean journal of orthodontics
    • /
    • v.40 no.3
    • /
    • pp.184-194
    • /
    • 2010
  • Objective: The purpose of this study was to investigate the effect of tribochemical silica coating on the shear bond strength (SBS) of rebonded ceramic brackets using nano-filled flowable composite resin. Methods: A total of 60 premolars were prepared and divided into 4 equal groups as follows: Tribochemical silica coating (TC) + Transbond XT (XT), TC + Transbond supreme LV (LV), Sandblast treatment (SA) + XT, SA + LV. Treated ceramic brackets were rebonded on the premolars using each adhesive. All samples were tested in shear mode on a universal testing machine. Results: SBS of silica coated groups were high enough for clinical usage (TCLV: 10.82 $\pm$ 1.82 MPa, TCXT: 11.50 $\pm$ 1.72 MPa). But, SBS of the sandblast treated groups had significantly lower values than the tribochemical silica coated groups (SALV, 1.23 $\pm$ 1.16 MPa; SAXT, 1.76 $\pm$ 1.39 MPa; p < 0.05). There was no difference between the shear bond strength by type of adhesive. In the silica coated groups, 77% of the samples showed bonding failure in the adhesive. In the sandblast treated group, all bonding failures occurred at the bracket-adhesive interface. Conclusions: The result of this study suggest that newly introduced nano-filled flowable composite resin and tribochemical silica coating application on debonded ceramic bracket bases can produce appropriate bond strengths for orthodontic bonding.

Study on the Flow Characteristics of the Epoxy Resin w.r.t. Sizing Materials of Carbon Fibers (탄소섬유 사이징에 따른 에폭시 수지 유동 특성에 관한 연구)

  • Lim, Su-Hyun;On, Seung Yoon;Kim, Seong-Su
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.379-384
    • /
    • 2018
  • This paper aims to study flow characteristics of epoxy resin w.r.t. the sizing agents treated on the carbon fibers which have the same surface morphologies before sizing treatment. Dynamic contact angle (DCA) was measured to evaluate wettability of a single carbon fiber. Wicking test and Vacuum Assisted Resin Transfer Molding (VARTM) were performed to find relation between DCA measurement results and impregnation characteristics. In addition, surface properties of the carbon fibers such as surface free energy and chemical compositions were measured and interfacial shear strength (IFSS) between the carbon fiber and the resin were experimentally characterized by using micro-droplet tests. According to these experimental results, the sizing agent for carbon fibers should have appropriate level of surface free energy and good chemical compatibility with the resin to reconcile resin flow characteristics and interfacial strength.

Evaluation of Adhesion Property with Pot Life and Curing Humidity of GFRC and Epoxy Adhesive (유리섬유강화 복합재료와 에폭시 접착제의 가사시간과 경화습도에 따른 접착 강도 평가)

  • Yoo, Ji-Hoon;Shin, Pyeong-Su;Kim, Jong-Hyun;Lee, Sang-Il;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.21 no.2
    • /
    • pp.65-70
    • /
    • 2020
  • Epoxy adhesive was mainly used to combine different composite materials. Epoxy adhesive was a typical thermosetting resin that can be bonded by changing from a linear structure to a three-dimensional network structure by curing reaction of epoxy and hardener. The curing conditions of epoxy adhesive were different with different types of hardener such as mixing ratio, curing time, and temperature. These curing conditions affected to the adhesive property of epoxy adhesive. In industry, it was difficult to proceed the applying epoxy adhesive and combining two parts immediately. The adhesive property decreased by humidity and pre-curing of epoxy adhesive in waiting time between two processes. In this paper, the glass fiber reinforced composite (GFRC) was combined with epoxy adhesive and adhesion property between epoxy adhesive and GFRCs was evaluated using single lap shear test. The different waiting times and humidity conditions were applied to epoxy adhesive in room temperature and adhesive property decreased as the waiting time increased. In small amount of humidity, the adhesive property increased because a small amount of moisture in the surroundings accelerated the curing reaction. In certain amount of humidity, however, the adhesion property decreased.

Measurement of three-dimensional interfacial wave structures in nearly- horizontal countercurrent statified two-phase flow (근사수평 반류성층 2상유동에서의 3차원 계면파의 구조측정)

  • 이상천
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.599-606
    • /
    • 1988
  • Structures of interfacial waves in nearly-horizontal countercurrent stratified air-water flow have been measured by means of a needle contact method. Based upon a statistical analysis for the liquid film distribution, statistical properties of the waves such as mean film thickness, mean wave amplitude and rms value of the wave fluctuation have been calculated. The results show that the film distribution can be described by a Gaussian probability density function for the three-dimensional wave regime. It is also indicated that the mean film thick ness and the rms value of the wave fluctuation increase as gas and liquid flow rates are increased in countercurrent two-phase flow. The dimensionless intensity of the wave fluctuation may be regarded as a function of the Froude number and the dimensionless mean film thickness.

Interfacial Adhesion of Silk/PLA Biocomposites by Plasma Surface Treatment (플라즈마 표면처리에 의한 Silk/PLA 바이오복합재료의 계면접착)

  • Chu, Bo Young;Kwon, Mi Yeon;Lee, Seung Goo;Cho, Donghwan;Park, Won Ho;Han, Seong Ok
    • Journal of Adhesion and Interface
    • /
    • v.5 no.4
    • /
    • pp.9-16
    • /
    • 2004
  • Silk fibers were subjected to argon and ethylene plasma treatments in order to improve the interfacial adhesion with polylactic acid (PLA). After the plasma surface treatment, the surface morphology and surface adhesion of silk fibers to the PLA resin were largely changed. Various plasma treatment conditions were used in this work: 10, 25, 50, 100 and 150 W of electric power, 1, 3, 5, 7 and 10 minutes of treatment time, and 10 and 50 sccm of a gas flow rate. The interfacial shear strength of plasma-treated Silk/PLA biocomposites was measured by a single fiber micro-droplet debonding test method. The result provided an optimal plasma treatment condition to obtain the improved interfacial adhesion in the Silk/PLA biocomposites.

  • PDF

Fiber Loading Effect on the Interlaminar, Mechanical, and Thermal Properties of Novel Lyocell/Poly(butylene succinate) Biocomposites (새로운 라이오셀/poly(butylene succinate) 바이오복합재료의 층간전단, 기계적, 열적 특성에 미치는 섬유함량의 영향)

  • Lee, Jae Young;Kim, Jin Myung;Cho, Donghwan;Park, Jong Kyoo
    • Journal of Adhesion and Interface
    • /
    • v.10 no.2
    • /
    • pp.106-112
    • /
    • 2009
  • In the present work, novel biocomposites made with biodegradable Lyocell woven fabrics and poly (butylene succinate) were successfully fabricated for the first time. Lyocell/poly(butylene succinate) biocomposites with different fiber loadings of 0, 30, 40, 50 and 60 wt% were prepared by compression molding with a sheet interleaving manner. The effect of Lyocell fabric loading on the interlaminar shear strength, tensile and flexural properties, heat deflection temperature, thermal expansion behavior, and thermal stability of the biocomposites was investigated. The properties strongly depended on the fabric loading and the results were consistent with each other. It was demonstrated that the Lyocell fabrics played a remarkable role in improving the properties of poly(butylene succinate) resin by incorporating the fabrics into the resin. The greatest inter-laminar, tensile, flexural and thermal properties of the biocomposites were obtained with Lyocell fabrics of 50% by weight.

  • PDF

Mechanical reliability of Sn-37Pb BGA solder joints with high-speed shear test (고속전단 시험을 이용한 Sn-37Pb BGA solder joints의 기계적 신뢰성 특성 평가)

  • Jang, Jin-Kyu;Ha, Sang-Su;Ha, Sang-Ok;Lee, Jong-Gun;Moon, Jung-Tak;Park, Jai-Hyun;Seo, Won-Chan;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.65-70
    • /
    • 2008
  • The mechanical shear strength of BGA(Ball Grid Array) solder joints under high impact loading was investigated. The Sn-37Pb solder balls with a diameter of $500{\mu}m$ were placed on the pads of FR-4 substrates with ENIG(Electroless Nickel Immersion Gold) surface treatment and reflowed. For the High Temperature Storage(HTS) test, the samples were aged a constant testing temperature of $120^{\circ}C$ for up to 250h. After the HTS test, high speed shear tests with various shear speed of 0.01, 0.1, 1, 3 m/s were conducted. $Ni_3Sn_4$ intermetallic compound(IMC) layer was observed at the solder/Ni-P interface and thickness of IMC was increased with aging process. The shear strength increased with increasing shear speed. The fracture surfaces of solder joints showed various fracture modes dependent on shear speed and aging time. Fracture mode was changed from ductile fracture to brittle fracture with increasing shear speed.

  • PDF

Shear bond strength of orthodontic bracket with hydrophilic primer (친수성 프라이머를 이용한 교정용 브라켓 접착시의 전단결합강도에 관한 연구)

  • Park, Chul-Wan;Cha, Kyung-Suk;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.32 no.4 s.93
    • /
    • pp.293-300
    • /
    • 2002
  • The purpose of this study was to evaluate the clinical effectiveness of hydrophilic primer, which claim to retain adequate bond strength on moistened enamel resulting from moisture or saliva contamination, by comparing the shear bond strength and adhesive failure patterns of brackets bonded using hydrophilic primer and conventional hydrophobic primer. Brackets were bonded to human premolars embedded in metal cylinders utilizing light cured adhesive, primed with either a hydrophilic primer(Transbond fm primer) or a conventional hydrophobic primer(Transbond XT primer). Each sample was exposed to varying degrees of artificial saliva contamination during the priming process. The shear bond strength was measured using a universal testing machine, and the adhesive failure patterns after debonding were visually examined by strereomicroscope and assessed using the adhesive remnant index(ARI). The results were as follows 1. In dry conditions, no significant differences in shear bond strength between Transbond W and Transbond XT primers were found. 2. Transbond MIP primer exhibited a significantly higher shear bond strength than Transbond XT primer in saliva-contaminated conditions, regardless of the degree of contamination. 3. When contaminated with one coat of saliva, Transbond MIP primer did not exhibit significant differences in shear bond strength compared to the dry condition. When contaminated with two coats of saliva, Transbond MIP primer exhibited a singnificantly lower shear bond strength compared to the dry condition. 4. The adhesive remnant index of the adhesive failure pattern had a tendency to decrease, as the degree of saliva contamination increased. Bracket-adhesive interface failure was observed in more than half of the saliva contaminated samples utilizing Transbond MIP primer, whereas the bond failure sites of the Transbond XT primer samples occurred almost exclusively at the adhesive-enamel interface in saliva-contaminated conditions. The results of this study suggest that in cases where moisture control is difficult, Transbond MIP primer is an effective alternative to conventional hydrophobic primers.

Effect of metal primer and thermocycling on shear bonding strength between the orthodontic bracket and gold alloy (치과용 금합금에 대한 금속 프라이머 처리와 열순환 처리가 교정용 브라켓의 전단결합강도에 미치는 영향)

  • Lee, Young-Kee;Cha, Jung-Yul;Yu, Hyung-Seog;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.39 no.5
    • /
    • pp.320-329
    • /
    • 2009
  • Objective: The aim of this study was to evaluate the effect of metal primers and thermocycling on shear bond strength between the orthodontic bracket and gold alloy. Methods: For this study, 80 specimens made of dental gold alloy were divided into 8 groups based on the combination of metal primers (none, Alloy primer, Metaltite, V-primer) and thermocycling (with and without thermocycling). Shear bond strength testing was performed with a universal testing machine. Bond failure sites were classified by a modified ARI (Adhesive Remnant Index) score. Results: All metal primer treated groups showed a significantly higher shear bond strength than the only sandblasting treated group without thermocycling (p < 0.05). There were no significant differences on shear bond strength in the groups with thermocycling (p > 0.05). Bond failure sites of the metal primer treated group without thermocycling occurred at gold alloy/adhesive interface, whereas there were no differences on bonding failure sites in the groups with thermocycling. Conclusions: These findings suggest that using metal primer on gold alloy enhances the initial bracket bond strength. But, this effect was not shown with thermocycling.

Comparison of Mechanical and Interfacial Properties on Chemical Structures of Acrylic and Epoxy Adhesives (아크릴 및 에폭시 접착제의 화학적 구조에 따른 유리섬유 복합재료의 기계적 및 계면 물성 변화 평가)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Choi, Jin-Yeong;Kwon, Dong-Jun;Lee, Sang-Il;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.79-84
    • /
    • 2016
  • An adhesive can be used to connect two different materials in structures. In comparing with other connecting methods, such as bolt, rivet, and hot melting, the adhesive does not need to use them. It leads to reduce the weight and decrease the stress concentration along the connecting line. This work studied the comparison of mechanical and interfacial properties of commonly-used two adhesives, acrylic type and bisphenol-A epoxy type. Tensile and flexural strength of neat adhesives were also compared. Lap shear test of two adhesives was deduced from the measurement of tensile and fatigue tests. After testing, the failure patterns of adhesive surfaces were observed by a microscope. Tensile strength and mechanical fatigue resistance at using bisphenol-A epoxy adhesive were better than acrylic adhesive. Also adding CNT reinforcement in epoxy adhesive can anticipate mechanical improvement.