• Title/Summary/Keyword: 경화온도

Search Result 534, Processing Time 0.024 seconds

Effect of Si sludge addition on the properties of lightweight geopolymers (Si 슬러지의 첨가가 경량지오폴리머 물성에 미치는 영향)

  • Kim, Minjeong;Kim, Yootaek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.257-263
    • /
    • 2019
  • Lightweight geopolymers were fabricated with non-milled IGCC slag and Si sludge as a bloating material. The relationship between addition amount of Si sludge and physical/chemical properties of lightweight geopolymers was investigated. When the geopolymers were made by mixing IGCC slag, alkali activator, and more than 10 wt.% Si sludge, the temperature of the geopolymer pastes reached higher than 130℃ in a few minutes. This exothermic reaction accelerated the geopolymer reaction; however, it was difficult to make geopolymer specimens because of a rapid bloating reaction. Both compressive strength and density of the specimens tend to decrease with an addition of Si sludge; however, there was little difference in both compressive strength and density with addition of Si sludge more than 10 wt.%. Because there was a limit to get low density geopolymers by simply increasing the addition of Si sludge, the control of pore size and distribution of geopolymer is more important by controlling flow rate of the paste through the control of W/S ratio. Therefore, it is important to control process conditions, appropriate W/S ratio for the bloating than the control of Si sludge. The optimum W/S ratio was 0.20 for the addition of Si sludge less than 30 wt.% and W/S ratio should be more than 0.28 for the addition of Si sludge more than 30 wt.%, although there was no practical application in fact.

Influence of vegetable wax on the moisture strength development of inorganic binder (무기바인더의 내수강도 발현에 미치는 식물성 왁스의 영향)

  • Bae, Min A;Kim, Kyeong Ho;Lee, Man Sig;Baek, Jae Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.574-580
    • /
    • 2020
  • An inorganic binder is eco-friendly because it can be cured at low temperatures and does not emit harmful gases. In addition, related research is progressing rapidly owing to the small defects in the core. On the other hand, inorganic binders based on silicates (SiO2-Na2O) have unique absorbent properties. This results in the absorption of moisture from the air and the weakening of the bonding force. In particular, the castings used in cast steel require high-strength properties because of the higher temperatures than aluminum castings. In this study, waxes containing ester groups were selected to improve the absorption of moisture of inorganic binders. The inorganic binder was characterized by X-ray fluorescence and thermogravimetric analysis-differential thermal analysis. The inorganic binder core strength was then evaluated. In the case of an inorganic binder containing wax, the water resistance increased to 216 N/㎠, confirming the up to 55% improvement in strength. Excellent casting characteristics were confirmed through steel castings.

Field Application of 80MPa High Strength Fire Resistant Concrete using Ternary Blended Cement (설계강도 80MPa 3성분계 고강도내화콘크리트의 현장적용 및 성과분석)

  • Kim, Seong-Deok;Kim, Sang-Yun;Bae, Ki-Sun;Park, Su-Hee;Lee, Bum-Sik
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.5
    • /
    • pp.113-119
    • /
    • 2010
  • Fire resistance and field tests for high-strength concrete(HSC) of 80MPa were carried out to evaluate whether or not it shows the same material properties even in the field condition of being mass-produced and supplied. As a result, it was found that fire resistant HSCs containing composite fiber(NY, PP) of 0.075% have great resistance to fire and spalling. In the field test, before the pumping air contents, slump flow, U-box, L-flow, compressive strength, gap of hydration temperature of interior and exterior of specimen and placing ratio per hour satisfied the required properties of HSC. However, after the pumping of HSC, as slump flow and L-flow were slightly less than required criterion, they need to be improved. In terms of hydration temperature of HSC, it was found to satisfy the related criterion. Packing ability as well as placing ratio per hour of HSC, which was about $44m^3$, show outstanding results. If slump flow of developed ternary HSC is improved after the pumping it can be useful for the construction of high-rise buildings.

Studies on the Rooting Ability of Cutting in Elder Berry(Sambucus canadiensis) (황금(黃金)포도나무(Elder berry)의 삽목시험(揷木試驗))

  • Park, Kyo Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.40 no.1
    • /
    • pp.43-50
    • /
    • 1978
  • The elder berry was known to the rich in natural food colour resources and used in as for making wine, confectionary, perfumes, natural food colour, making elder berry juice, jelly, jam and medicinal properties or oils. In the present study, wish was to find the effect of various factors on the success of the vegetative propagation of elder berry by means cutting in the exposed field and green house was carried out and those obtained results can be summarized as follows. 1. Cuttings with dormant cutting stocs in the polyethylen house with heating and water mist spray resulting 100 percent survival. And temperature and the relative humidity in which fraim during the cutting season were around $20{\sim}25^{\circ}C$ and 70-90% respectively and in case as more significant other of the 1% Level. 2. With five varieties tested, resulting 93.8 percent survival, The F. value is not significant. 3. With four organs of cutting stock tested resulting 57.5 percent survival on the cuttings with two knodes of dormant cutting stock served as better cutting stock than others. The F. value is more significantly 1% Level. 4. Dormand bud served as possible cutting stock was found to be 17.66 survival percentage. 5. Both earlier and later stage of germinated Leaves with soft wood cutting stock poor cuttings, and the degree of development of 15th June cutting stock was optimum stage on the principal factor governing the success of cutting in the soft wood cutting showing 54% survival. The F. value is more 1% Level significant.

  • PDF

Thermal and Mechanical Properties of OG POSS Filled DGEBA/DDM (OG POSS의 첨가가 DGEBA/DDM의 열적, 기계적 물성에 미치는 영향)

  • Choi, Chunghyeon;Kim, YunHo;Kumar, Sarath Kumar Sathish;Kim, Chun-Gon
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.379-383
    • /
    • 2017
  • A study on the low Earth orbit (LEO) space environment have been conducted as a use of composites have increased. Among the LEO environmental factors, atomic oxygen is one of the most critical factors because atomic oxygen can react and erode a surface of polymer-based composite materials. POSS (Polyhedral Oligomeric Silsesquioxane) materials have been widely studied as an atomic oxygen-resistant nanomaterial. In this study, nanocomposites, which are composed of OG (Octaglycidyldimethylsilyl) POSS nanomaterials and DGEBA/DDM epoxy, were fabricated to find out its thermal and mechanical properties. FT-IR results showed that the nanocomposites were fully cured and contained OG POSS enough. Thermogravimetric analysis and differential scanning calorimetry were performed to measure the thermal properties of the nanocomposites. The initial mass loss temperature and char yield were increased through the filling of OG POSS. As the content of OG POSS increased, glass transition temperature tended to increase to 5 wt.% of OG POSS, but the temperature decreased significantly at 10 wt.% of OG POSS. The tensile test results showed that the content of OG POSS did not affect tensile strength and tensile stiffness.

A Study on the Effect of Electrolyte Additives on Zn Electrode with Pb3O4 in Zn-AgO Secondary Battery System (Zn-AgO 이차 전지에서 Pb3O4가 첨가된 아연 전극에 미치는 전해질 첨가제의 영향에 관한 연구)

  • Park, Kyung-Wha;Moon, Kyung-Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.242-249
    • /
    • 2003
  • Zn electrode was widely used as an anode material in alkaline battery systems in highly concentrated KOH electrolyte, however it was well known that its cycle life is significantly shortened by growth of dendrite due to the high dissolution of $Zn(OH)_2$ and rapid electrochemical reaction. In this study when by the additives such as $Ca(OH)_2$, Citrate, tartrate and Gluconate were added to $40\%$ KOH electrolyte at solution temperature of $25^{\circ}C$ and the amount of $5wt\%\;Pb_3O_4$ was mixed to Zn electrode and then the effect of $Pb_3O_4$ and additives on the electrochemical behavior of Zn electrode was investigated by Potentiodynamic Polarization Curves, Cyclic Voltammetry, Accelerated Life Cycle lest, and SEM image analyses. The addition of $Pb_3O_4$ reduced the corrosion rate of Zn electrode. The corrosion potential of Zn electrode with $Pb_3O_4$ was higher or lower than that of pure Zn electrode however was not influenced practically to the open circuit voltage. And the addition of 4 type additives had an important role in improving both cycle life in accelerated cycle life test and corrosion resistance. Furthermore the additive of Tartrate indicated comparatively a good effect to corrosion resistance as well as charging-discharging property Improvement among those four type additives.

Culture characteristics and genetic relationship of morel mushroom (Morchella spp.) isolates from Korea and other countries (곰보버섯 (Morchella spp.) 수집균주의 배양적특성 및 유전적 유연관계)

  • Min, Gyeong-Jin;Park, Hye-sung;Lee, Eun-ji;Lee, Chan-Jung
    • Journal of Mushroom
    • /
    • v.18 no.1
    • /
    • pp.100-106
    • /
    • 2020
  • Eight morel mushroom species were collected from Korea and other countries. The culture characteristics, genetic relationships, and beta-glucan content of the strains were analyzed. The mycelia of Morchella species exhibited optimal growth when cultured in dark at 25 ℃ in media with pH 7. The mycelia had a distinctive mycelial scent and characteristically changed color, being white initially, and then turning dark yellow to dark brown as it grew. The mycelia were classified into five types based on morphology. The isolates were identified as Morchella conica, two M. sextelata, M. importuna, M. esculenta, and three M. crassipes, based on ITS-rDNA sequences. PCR polymorphisms were variably produced within Morchella spp. using Universal Fungal Fingerprinting Primers (UFPF) and classified into four groups at the intra and inter species level. The strains, KMCC04971 and KMCC04407, showed the same banding pattern as M. conica and M. sextelata, respectively; however, these results were different from those of ITS analysis. Glucan content analysis by strain showed that the KMCC 04973 strain of M. importuna had the highest alpha- and beta-glucan content, at 16.4 g and 33.1 g per 100 g, respectively.

Effect of Magneto-acoustic Emission of Reactor Pressure Vessel Materials Irradiated by Neutrons (중성자에 조사된 원자로 압력용기 재료(SA508)의 Magneto-acoustic emission 효과)

  • Ok, Chi-Il;Lee, Jong-Kyu;Park, Duck-Gun;Hong, Jun-Hwa;Kim, Jang-Whan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.6
    • /
    • pp.433-438
    • /
    • 1999
  • Magneto-acoustic emission (MAE) energy and hardness were measured in the reactor pressure vessel steel (SA508 Steel) for the various neutron fluence, irradiated dose up to $10^{18}n/cm^2$. The hardness was nearly a constant up to $10^{16}n/cm^2$, but it was rapidly increased with an increase of the neutron irradiation above $10^{17}n/cm^2$. It may be considered that the increase of hardness is due to the hindrance of dislocation motion induced defect clusters by irradiation. On the other hand. the MAE energy was slowly decreased as the neutron irradiation increased up to $10^{16}n/cm^2$ and it was rapidly decreased with an increase of the neutron irradiation above $10^{17}n/cm^2$. The decrease of the MAE energy may be considered as an increase of the defect clusters which is very sensitive to the $90^{\circ}$ domain wall motion. Furthermore, the change of MAE energy and hardness had nearly a linear relationship. but the change of MAE energy was more significant than the change of the hardness. Therefore, MAE may be considered as a very useful technique for the nondestructive evaluation of irradiation damage.

  • PDF

A Study on Properties of Retarder via Tabletting Method (정제화 방법을 이용한 응결 지연제의 특성에 관한 연구)

  • Ryou, Jae-Suk;Yang, Neung-Won;Lee, Yong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.201-207
    • /
    • 2013
  • When hot weather concrete is utilized, the cooling methods of cooling pipe, liquid nitrogen, ice, etc., are used to prevent the poor consistency and cold joint due to high temperature. These methods, however, spike the production cost and energy consumption, and make quality control difficult. Among these methods is one that involves the use of a retarder. Although economical, retarder is caused difficulty of retarded hardening and setting time control due to inaccurate weighing and poor working condition. Therefore, how to make a tablet for hot weather concrete, as with the existing pharmacy and foods, is discussed in this study, including the following items: mortar setting time, flow test by elapsed time, physical and mechanical properties of concrete. As a result, gluconic acid is superior to lignosulfonic acid and the possibility of using them for such purpose without quality degradation was confirmed in this study, when retarder is tabletting.

An Experimental Study on Performance of Heatproof Silicon at the Connector of Boiler Exhaust Tube (배기통과 가스보일러 접속부의 내열실리콘 성능에 관한 실험적 연구)

  • Leem, Sa-Hwan;Lee, Jong-Rark;Kim, Cheol-Jin;Han, Gwi-Ho;Kim, Yong-Joo;Kim, Hee-Soo;Jang, Won-Suk;Lim, Cheong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.91-97
    • /
    • 2007
  • Recently, during the past five years, accidents of gas boiler using city gas have occurred 7.4 times more than those which use LP gas. The number of accidents has increased since the use of city gas boilers has increased. These boiler accidents resulted in 87% death from poisoning of CO, and casualty of the accidents was 4.3 times more than that of other types of accident. Hence this study makes the cause of accidents clear by separation the exhaust tube which is the cause of CO poisoning. Also, this study will establish the safety of heat-resistant silicon through testing the performance of heat-resistant silicon. The experiment showed that common silicon started hardening at $56^{\circ}C$ while the heat-resistant silicon did not begin carbonization until $606^{\circ}C$. Besides at the temperature of $150^{\circ}C$ which is the normal temperature of exhaust tube, common silicon leaked on the pneumatic test after deterioration, but the heat-resistant silicon maintained its original property. With these results, we judge that we can reduce the casualty by CO poisoning if we use the heat-resistant silicon to the connector of he exhaust tube.

  • PDF