• Title/Summary/Keyword: 경험모델

Search Result 2,102, Processing Time 0.031 seconds

Suggestions for learning design patterns based on the Dreyfus model (드라이퍼스 모델 기반 디자인 패턴 학습 모델 제안)

  • Moon, HyunJun;Kim, Jungsun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.335-336
    • /
    • 2021
  • 디자인 패턴은 클래스와 객체를 활용한 23가지의 개발자 의도를 만족시켜주는 최선의 실천법들을 정리한 것이다. 디자인 패턴은 설계 경험과 객체지향 패러다임의 기반 지식들을 필요하므로 실질적인 패턴 학습에 어려움이 있다. 디자인 패턴 학습에 대한 도움을 제시해 줄 수 있는 가이드라인으로 기술 습득 모델에 활용하는 드라이퍼스 모델을 적용하는 것을 제안하고자 한다. 드라이퍼스 단계별 모델을 기반으로 단계 별 디자인 패턴 학습 단계를 제시한다.

  • PDF

Precise Positioning from GPS Carrier Phase Measurement Applying Stochastic Models for Ionospheric Delay (전리층 지연 효과의 통계적 모델을 이용한 반송파 정밀측위)

  • Yang, Hyo-Jin;Kwon, Jay-Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.4
    • /
    • pp.319-325
    • /
    • 2007
  • In case of more than 50km baseline length, the correlation between receivers is reduced. Therefore, there are still some rooms for improvement of its positional accuracy. In this paper, the stochastic modeling of the ionospheric delay is applied and its effects are analyzed. The data processing has been performed by constructing a Kalman filter with states of positions, ambiguities, and the ionospheric delays in the double differenced mode. Considering the medium or long baseline length, both double differenced GPS phase and code observations are used as observables and LAMBDA has been applied to fix the ambiguities. The ionospheric delay is stochastically modeled by well-known 1st order Gauss-Markov process. And the correlation time and variation of 1st order Gauss-Markov process are calculated. This paper gives analyzed results of developed algorithm compared with commercial software and Bernese.

Development of a Havruta Learning model and exploring its applicability in non-face-to-face real-time online classes (비대면 실시간 온라인 수업을 위한 하브루타 학습모델 개발 및 적용가능성 탐색)

  • Byon, Kil-Hee;Choi, Dea-Hun;Cho, Woo-Hong;Yun, Kyoung-Mi
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.129-130
    • /
    • 2021
  • 본 연구의 목적은 학생의 주도적 학습을 돕는 하브루타 학습방법을 대학의 비대면 실시간 온라인 수업에서 활용할 수 있는 하브루타 학습모델 개발과 그 적용 가능성을 탐색하는 것이다. 이를 위해 온라인 학습환경에서 하브루타 학습법 적용사례에 대한 선행연구 고찰과 관련 이론들을 분석하고 하브루타 수업운영 경험자 2인의 인터뷰를 통해 비대면 실시간 온라인 수업 상황에서 적용 가능한 학습 모델안을 고안할 것이다. 이를 하브루타 수업 운영 경험이 풍부한 6인의 전문가를 대상으로 수업 모델안의 적절성과 적용가능성에 대한 평가를 실시하여 비대면 실시간 온라인 수업을 위한 하브루타 학습모델을 개발하고자 한다. 이 연구를 통해 비대면으로 수업을 해야 하는 상황에서도 학습자의 주도적 학습을 가능하게 함으로써 학습효과를 높여 미래 사회에 필요한 역량을 개발하는 데 기여할 수 있을 것이라고 기대한다.

  • PDF

Factors Affecting User Intention towards Metaverse Shopping: An Application of the S-O-R model (메타버스 쇼핑 이용 의도에 영향을 미치는 요인에 관한 연구: S-O-R 모델을 기반으로)

  • Yuting Chen;Eunjin Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.303-321
    • /
    • 2023
  • Metaverse shopping has emerged as a new phenomenon in social commerce. This study aims to investigate the user experience of metaverse stores shopping based on the S-O-R model. The results of the study show that telepresence, entertainment, personalized recommendation, and social interaction have significant positive effects on flow experience and satisfaction in metaverse shopping. Additionally, satisfaction and flow experience are shown to have significant positive effects on user intentions. This study provides valuable implications for the design and management of metaverse stores to improve user experience and increase user intention.

창업실패관련 개인평가와 사업실패로 인한 손실경험이 재창업의도에 미치는 영향에 관한 연구

  • Kim, Ha-Gyeong;Kim, Jong-Taek
    • 한국벤처창업학회:학술대회논문집
    • /
    • 2017.11a
    • /
    • pp.63-69
    • /
    • 2017
  • 2015년 기업생멸 행정통계에 따르면, 우리나라의 최근 5년 동안('2010~2014년) 연평균 창업은 77만개, 폐업은 69만개인 것으로 나타났다. 지난 2015년 한해에만 개인사업자로 106만8313명이 창업을 하고 73만9420명이 폐업을 했다. 이는 하루 평균 3000명이 창업을 하고 2000명이 문을 닫는 셈이다. 실패를 경험한 기업인들은 여러 가지 심리적, 경제적 어려움에 직면하게 된다고 연구 보고되고 있다. 이같은 결과는 사업실패를 경험한 기업인들에 대한 케어의 필요성을 보여준다. 지난 2010년부터 정부가 실패기업인들에 대한 재기지원사업에 나서고는 있으나 재창업지원제도의 효과성에 대해서는 보장하기 어려운 상태다. 일각에서는 재창업지원이 양적인면에서는 활성화됐으나 질적으로는 아직 미흡하다고 지적이 나오고 있다. 이같은 상황에 착안하여 본 연구는 사업실패를 경험한 기업인들이 겪게되는 심리적 특성과 재기를 하고자 할 때 방해요소로 작용하는 감정요인에 초점을 맞추고자 한다. 따라서 선행연구를 통해 사업실패를 경험한 기업인들의 감정메카니즘을 규명한 모델(건강신념 모델:Health Belief Model)을 적용한 창업실패관련 개인평가와 사업실패경험(재무적 손실, 비재무적 손실)이 재창업의도에 어떠한 영향을 미치는지 규명하고자 한다. 감정요인인 창업실패관련 개인평가는 지각된 심각성, 지각된 취약성, 지각된 장애로 구성했다. 또 창업실패관련 개인평가와 재창업의도 사이, 사업실패경험과 재창업의도 사이에 재창업지원정책, 창업자기효능감이 각각 조절작용을 하는지 유의미한 관계성을 알아보고자한다. 연구 대상은 정부 재창업지원 프로그램을 진행하고 있는 중소기업진흥공단, 서울산업진흥원, 재도전지원센터등 기관의 재창업지원을 받은 기업인을 대상으로 설문을 실시하여 이들이 재창업지원서비스를 받기 전과 후에 대한 측정을 통해 실증분석을 하려고 한다.이 연구가 설정한 가설이 맞을 경우, 시사점으로는 정부의 재창업지원 프로그램의 효과성에 대한 검증이 될 것이다. 또 창업실패관련 감정메카니즘 규명으로 사업실패 기업인들의 재기를 도울 수 있는 재창업지원정책의 고도화가 가능해 질 것으로 판단된다.

  • PDF

Verification of firefighters' heuristics through big data analysis (빅데이터 분석을 통한 소방관의 경험법칙 검증 및 화재예방 활용)

  • Park, Sohyun;Park, Jeong-Hoon;Shin, Eun-Ji;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.2
    • /
    • pp.50-55
    • /
    • 2020
  • The heuristics accumulated in the field activities of firefighters were reviewed through big data analysis of fire occurrences in Gyeonggi-do and researched to be utilized for proper fire prevention activities according to time, day, and target through quantitative modeling. Empirical rules with high sympathy were collected through direct interviews with firefighters. Among them, the rule of thumb that "Friday is the most fire-prone" is considered to be the most important in terms of fire monitoring and prediction. A big data comparison analysis was conducted, including the number of fires and damages that occurred in Gyeonggi-do in 2018. Furthermore, fire occurrence patterns by region, day of the week, time of day, and building type were derived. Regarding empirical rules that have been validated through research, relatively inexperienced firefighters also can make decisions by relying on refined quantitative predictive modeling and empirical rules including local government and time-based factors that reflect big fire occurrence data.

Structural Optimization and Improvement of Initial Weight Dependency of the Neural Network Model for Determination of Preconsolidation Pressure from Piezocone Test Result (피에조콘을 이용한 선행압밀하중 결정 신경망 모델의 구조 최적화 및 초기 연결강도 의존성 개선)

  • Kim, Young-Sang;Joo, No-Ah;Park, Hyun-Il;Park, Sol-Ji
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3C
    • /
    • pp.115-125
    • /
    • 2009
  • The preconsolidation pressure has been commonly determined by oedometer test. However, it can also be determined by insitu test, such as piezocone test with theoretical and(or) empirical correlations. Recently, Neural Network (NN) theory was applied and some models were proposed to estimate the preconsolidation pressure or OCR. It was already found that NN model can come over the site dependency and prediction accuracy is greatly improved when compared with present theoretical and empirical models. However, since the optimization process of synaptic weights of NN model is dependent on the initial synaptic weights, NN models which are trained with different initial weights can't avoid the variability on prediction result for new database even though they have same structure and use same transfer function. In this study, Committee Neural Network (CNN) model is proposed to improve the initial weight dependency of multi-layered neural network model on the prediction of preconsolidation pressure of soft clay from piezocone test result. Prediction results of CNN model are compared with those of conventional empirical and theoretical models and multi-layered neural network model, which has the optimized structure. It was found that even though the NN model has the optimized structure for given training data set, it still has the initial weight dependency, while the proposed CNN model can improve the initial weight dependency of the NN model and provide a consistent and precise inference result than existing NN models.

Study on Guideline of Application User Experience based on Persona and Scenario (퍼소나와 시나리오를 기반으로 한 어플리케이션 UX 설계 가이드라인에 관한 연구)

  • Gwon, Min;Park, Seok-Cheon
    • Annual Conference of KIPS
    • /
    • 2013.05a
    • /
    • pp.871-874
    • /
    • 2013
  • 사용자 경험은 사용자가 제품을 사용 하면서 상호 작용을 통해 얻게 된 경험을 의미 하며 과정지향적인 인터랙티브 제품 일수록 보다 나은 경험을 위해 경험요소를 계획 하고 구성 하는 사용자 경험 디자인의 비중이 높다. 이는 어플리케이션의 기술적 완성도 및 상업적 성공 여부에도 영향을 미친다. 본 논문은, 인터랙션 디자인 분야의 사용자 모델 퍼소나(persona)와 이를 도입한 퍼소나 기반 시나리오 기법(Persona-Based Scenario)을 통하여 도출해낸 요구 사항을 토대로 기존의 사용자 경험 설계 연구 보다 사용자 중심적으로 향상된 인터랙션 프레임워크를 제공 하는데 목적을 두고 있다.

Problems in Psychological Debriefing and Suggestions for Best Practice (심리적 경험보고(debriefing)의 문제점들과 올바른 적용을 위한 제언)

  • Seung-yeon Lee
    • Korean Journal of Culture and Social Issue
    • /
    • v.13 no.1
    • /
    • pp.63-89
    • /
    • 2007
  • This study introduces major models of psychological debriefing that has been utilized as an early psychological intervention after traumatic incidents and examines the controversy on the effects of psychological debriefing. It is difficult to make consistent conclusions regarding its effects based on the previous research data. Therefore, this study examines the major issues related to psychological debriefing and suggests the important points for best practice in crisis situations.

  • PDF

Experience Sensitive Cumulative Neural Network Using RAM (RAM을 이용한 경험유관축적 신경망 모델)

  • 김성진;권영철;이수동
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.2
    • /
    • pp.95-102
    • /
    • 2004
  • In this paper, Experience Sensitive Cumulative Neural Network (ESCNN) is introduced, which can cumulate the same or similar experiences. As the same or similar training patterns are cumulated in the network, the system recognizes more important information in the training patterns. The functions of forgetting less important information and attending more important information resided in the training patterns are surveyed and implemented by simulations. The system behaves well under the noisy circumstances due to its forgetting and/or attending properties, even in 50 percents noisy environments. This paper also describes the creation of the generalized patterns for the input training patterns.