• Title/Summary/Keyword: 경사해빈

Search Result 40, Processing Time 0.022 seconds

Seasonal Variations of Sedimentary Processes on Mesotidal Beach in Imjado, Southwestern Coast of Korea (한반도 서해남부 임자도 해빈 퇴적작용의 계절적 변화)

  • 류상옥;장진호;조주환;문병찬
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.3
    • /
    • pp.83-92
    • /
    • 2004
  • A continuous monitoring of textural characteristics of surface sediments, sedimentation rates and beach profile was carried out to investigate the seasonal variations of sedimentary processes in the Imjado beach, southwestern coast of Korea for two years. The beach profiles consist of steep beach face and relatively flat middle and low tide beaches. The slope of the beach face increases in summer and decreases in winter, in good accordance with the standard beach cycle. Ridge and runnel systems are well developed in the middle and low tide beaches during the summer, but these structures are replaced by mega-ripples during the winter. The sediments are fining southward as well as landward. The mean grain-size tends to be increasingly coarser during seasons of autumn and winter on the north beach and during seasons of winter and spring on the south one. In addition, the sediments are eroded on the north beach and accumulated on the south one as a whole. These are probably due to southward transportation of the sediments as long-shore current (NE-SW) runs around the coastal line of the beach. However, the seasonal variations in accumulation rates are very complex and irregular. It is considered that the Imjado beach represents in non-equilibrium state, as a result of coastal and submarine topographic changes by artificial agents and sea-level uprising associated with global warming.

Seasonal Variations of Hamo and Hyeopjae Beach Sediments in the Western Part of Jeju Island (제주도 서부 하모와 협재 해빈 퇴적물의 계절 변화)

  • Youn, Jeung-Su;Kim, Tae-Joung
    • Journal of the Korean earth science society
    • /
    • v.32 no.3
    • /
    • pp.265-275
    • /
    • 2011
  • The Hamo and Hyeopjae beaches in the western part of Jeju Island were studied in terms of seasonal variations of surface sediment and beach profile. Seasonal drift direction of the beach sands also was investigated. The Hamo beach of $7.3^{\circ}-10.8^{\circ}$ steep is composed of medium sand containing volcanic clasts and shell fragments. The Hyeopjae beach of $2.8^{\circ}-6.5^{\circ}$ steep is composed of coarse shelly sand. Hamo beach deformation is probably caused by the jetties constructed in the western part of the beach. In the Hyeopjae beach, surface sands were drifted into the dune side by the northwestern stormy wind during winter season.

A Study on the Transport Mechanism of Tidal Beach Sediments I. Deukryang Bay, South Coast of Korea (조간대성 해빈 퇴적물의 이동양상에 관한 연구 I. 한국 남해안의 득량만)

  • Ryu, Sang-Ock;Kim, Joo-Young;Chang, Jin-Ho;Cho, Yeong-Gil;Shin, Sang-Eun;Eun, Go-Yo-Na
    • Journal of the Korean earth science society
    • /
    • v.27 no.2
    • /
    • pp.221-235
    • /
    • 2006
  • In order to understand the transport mechanism of tidal beach sediments in Deukryang Bay, south coast of Korea, beach profiles, surface sediments, sedimentation rates and hydrodynamic conditions have been investigated. The beach is composed of a steep beach face and gentle low-tide terrace, showing general morphologic characteristics of tide dominated beach. Central beach face of an indented coast becomes flattened in summer, but ridge and runnel system developed in other seasons makes the beach profile rather irregular. These seasonal variations of beach profiles and sedimentation rate indicate that beach sedimentation is mainly controlled by both tide and wave processes. Erosion is prevalent in winter when strong wind wave is dominant, while deposition is dominant in other seasons. However, central beach showed an apparent erosional phase in summer. This is caused by strong waves induced by southerly strong winds occurring ephemerally during the summer. On the other hand, sedimentation rates are -89.2 mm/yr on the central beach and 60.5 mm/yr and 38.2 mm/yr on the sides. This result suggests that sediments are eroded on the central beach and subsequently transported to the both sides. Therefore, the central part of Sumun beach, used as a beach bathing site, will be continuously eroded, if nearby dyke continues to prevent the sediment supply from sources.

Seasonal Variations of Iho and Hamdeok Beach Sediments in the Jeju Island, Korea (제주도 이호.함덕 해빈퇴적물의 계절적 변화에 관한 연구)

  • Youn, Jeung-Su;Park, Yong-Seung;Kim, Tae-Joung;Park, Sang-Woon
    • Economic and Environmental Geology
    • /
    • v.41 no.2
    • /
    • pp.243-252
    • /
    • 2008
  • The Iho and Hamdeok beaches, the major coastal beaches in Jeju Island, have been studied through size analysis and using an experimental extension pole and sediment trap in beach profile, in order to understand their textural characteristics, migration patterns, and seasonal change in beach geometry. The Iho beach is composed of coarse and medium sands, 590 m in total length. The foreshore slope is 12.3$^{\circ}$ in summer and 10.8$^{\circ}$ in winter, which shows more steeper in summer. The Hamdeok beach consisting mostly of shell fragments is 950 m long, $5.7{\sim}7.4^{\circ}$ steep and 97.4${\sim}$114.5 m wide, respectively. The suspended load drift concentrations in the studied beaches showed 4.5 mg/l during the period of summer and 33.2 mg/l in winter, and those of fine-grained sediments are derived mostly from the marine of northeastward direction. The typical beach transformation of the Iho beach is resulting from the construction of jetties in the west side that built up the sand inside the jetties, whereas the erosion is occurring on the east side of beach. The center and berm sides of the sand in the Hamdeok beach drift into the dune side during the period of the stormy winter season.

Numerical Simulation of the Ship-Induced Waves inside Harbor (항내 항주파 계산을 위한 수치모의)

  • 이화영;권세영;오병철;전인식
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.270-275
    • /
    • 2003
  • 일반적으로 완경사를 가지는 자연해빈은 항내 파랑 에너지를 감쇄시켜 항만의 정온도를 유지시키는 중요한 역할을 한다. 그러나 계속되는 항만개발로 자연해빈이 인공적인 호안이나 안벽 등으로 급속하게 대체되어 가고 있는 실정이다. (중략)

  • PDF

A Survey and Analysis of Swim Zone Width and Beach Scale Factor for Gangwon Beaches (강원도 해수욕장의 유영폭 및 해빈단면 축척계수 조사 분석)

  • Lee Jung-Lyul;Kim In-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.3
    • /
    • pp.241-250
    • /
    • 2006
  • In the present study, a beach survey such as sand sizes, swim zone widths, and slopes of swash zone has been accomplished for 39 beaches along the Gangwon coastline. The data analysis presents that the swim zone width has a strong correlation with the sand size, showing that the swim zone width is reversely proportional to the 1.1 power of a grain size. The profile factor A has been analyzed using the beach profile form of $h=Ay^{2/3}$, where A was resulted to be proportional to the 0.77 power of a gram size.

Local Scour at a Submarine Pipelines on Slope Beach (경사해빈에 설치된 해저관로의 국부세굴)

  • 황현구;김경호;연주흠;오현식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.3
    • /
    • pp.176-185
    • /
    • 2003
  • In order to ensure that submarine pipelines are stable and functional during their project lives, attention must be paid to possibility of their local scouring. When a pipeline is placed on an erodible bed, scour will develop and cause the spanning of the pipeline. U they were destroyed partially or fully, it might cause enormous restoration expenses and contamination of sea water. This paper aims at examining the characteristics of the scour End the prediction of the local scour depths around the submarine pipelines. The pipelines on the model beach with the uniform slope are placed, and the local scour depths around the pipelines are obtained according to the various wave steepnesses. Using the experimental results, some parameters needed for analyses are calculated. Finally, empirical equations of the scour depth around the pipelines are suggested through the correlation analyses between the rotative scour depth. the KC number and Modified Ursell number.

Analysis of Shoreline Change Using Multi-temporal Remote Sensed Data on Songjeong Beach, Busan (다중시기 원격탐사 자료를 이용한 부산 송정해수욕장의 해안선 변화 분석)

  • Jang, Dong-Ho;Kim, Jang-Soo;Baek, Seung-Gyun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.4
    • /
    • pp.59-71
    • /
    • 2012
  • This research was carried out to analyze long-term shoreline change on Busan Songjeong Beach using multi-temporal remote sensed data, GPS survey data and grain size analysis. As a result of multi-temporal satellite imagery analysis, the beach was stable status till early 2000s, but the erosion occurred over whole beach after the construction of shore protection road since 2000. In the result of DEM analysis, the elevation of beach reduced and the slope of berm increased after construction of shore protection road along the coast, this means the erosion environment was dominant on the beach. But the sedimentation was slightly stronger than the erosion in northern region of the beach, then the slope of berm was gentle. In the result of grain size analysis using in-situ samples, the coarsening-trend was found in southeastern region (Line E) of the beach, it is caused by strong wave energy from the outer sea. Consequently, major causes of the beach erosion in the study area were the interception of sand supply from a dune owing to shore protection road construction and scouring phenomenon by strong wave energy in southeastern region of the beach. If the topographic or artificial change will not occur in the future, the erosion in this area will continue. Therefore the prevention measures are required.

Beach Profile Estimation Using a Photogrammetry (사진측정법을 이용한 해빈단면의 추정)

  • Kim, Baeck-Oon;Park, Yong-Ahn;Oh, Im-Sang;Khim, Boo-Keun;Choi, Kyung-Sik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.4
    • /
    • pp.228-233
    • /
    • 1998
  • This study presents a close-range photogrammetry that is applicable to beach profile estimation using a non-metric camera. Based on the analysis of oblique video image in which the video camera was installed on a horizontal plane and the field of view was fixed, a new equation to analyze a photograph was developed considering the following aspects: (1) camera is allowed to be rotated about its optical axis and (2) a simple error model is adopted to correct lens distortion and other systematic errors associated with the non-metric camera, which improves accuracy of non-metric imageries. To test the modified technique, photographs of the beach were taken near the Donghae City in February, 1998. In addition, beach profiles were surveyed with conventional dumpy level and surveying staff. RMS error between the estimated and measured beach profiles is less than 10 cm in elevation.

  • PDF