• Title/Summary/Keyword: 경량차체

Search Result 140, Processing Time 0.033 seconds

Structural Strength Evaluation of a Carbody by Finite Element Analysis and Tests (구조해석 및 시험에 의한 경량화 차체 구조강도 평가)

  • Yoon S.C.;Kim W.K.;Jun C.S.;Kim M.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.49-54
    • /
    • 2005
  • This paper describes the result of structure analysis and load test of body structure. The purpose of the analysis and test is to evaluate an safety which body structure shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load and operating condition. Material of body structure applied an aluminum alloy. Body structure consist of side frame, under frame, roof frame, end frame. Both FEM analysis and load test are based on 'Performance Test Standard for Electrical Multiple Unit, noticed by Ministry of Construction & Transportation, in 2000' and reference code is JIS E 7105. The test results have been very safety and stable fer design load conditions.

  • PDF

Mechanical Properties of Joints according to Welding Methods and Sensitivity Analysis of FSW's Welding Variables for A6005 Extruded Alloy of Rolling Stock (철도차량용 A6005 압출재의 용접방법에 따른 접합부 기계적 특성 및FSW 용접 변수의 민감도 분석)

  • Kim, Weon-Kyong;Won, Si-Tae;Goo, Byeong-Choon
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.131-138
    • /
    • 2010
  • Recently, extruded aluminium-alloy panels have been used in the car bodies in order to meet the needs for the speed-up and light-weight of the railway vehicles. Most of the car bodies were jointed by arc weldings, like GMAW (GasMetal Arc Welding) and GTAW (Gas Tungsten Arc Welding), but these weldings became fairly worse the mechanical properties of the junction than the base metal. Nowadays, FSW (Friction Stir Welding), which is superior to the arc weldings, has been applied in the railway vehicles. In this study, the mechanical properties of the joints in both FSW and GMAW for A6005 extruded aluminium-alloy sheets have discussed. In addition, the relationships between the welding conditions and the mechanical properties for the joint of FSW have analyzed through the sensitivity analysis. It can be concluded that the mechanical properties for the joint of FSW are better than those of GMAW and the welding speed is the most sensible welding condition in the process of FSW.

The Study of Three-wheel with Active Tilt Control(ATC) Systems in Design - Concentrated on Three Wheel Motor Bike (틸팅시스템을 적용한 삼륜차량 디자인 연구 - 삼륜 스쿠터를 중심으로 -)

  • 곽용민;안철홍
    • Archives of design research
    • /
    • v.16 no.1
    • /
    • pp.15-24
    • /
    • 2003
  • In the latest date, vehicles are offered to the drivers, not only the skill for shifting but the pleasure for driving vehicles that are existing today can be a social problem because the amount of vehicles that are increasing give difficulty for the traffic facilities and parking expansion. these day 80% of four wheeled vehicle carriers single or double person the reducing car scale is an important thing about the financial good use resources of energy and the storage of environment. A solution for these problem is a new general idea vehicle development for one or two person to ride. For the sake of these reasons, first, the information is collected and analyzed about existing foreign countries production. Car external design is intended by mathematical modeling, simulation and model testing about frame system of new concept specially we would like to show three wheeled vehicle that has active tilt control(ATC) system. This car tilts actively by the center rotation wheel and frame when the vehicle turns.

  • PDF

A Study on Crashworthiness and Rollover Characteristics of Low-Floor Bus made of Honeycomb Sandwich Composites (하니컴 샌드위치 복합재를 적용한 저상버스의 충돌 및 전복 특성 연구)

  • Shin, Kwang-Bok;Ko, Hee-Young;Cho, Se-Hyun
    • Composites Research
    • /
    • v.21 no.1
    • /
    • pp.22-29
    • /
    • 2008
  • This paper presents the evaluation of crashworthiness and rollover characteristics of low-floor bus vehicles made of aluminum honeycomb sandwich composites with glass-fabric epoxy laminate facesheets. Crashworthiness and rollover analysis of low-floor bus was carried out using explicit finite element analysis code LS-DYNA3D with the lapse of time. Material testing was conducted to determine the input parameters for the composite laminate facesheet model, and the effective equivalent damage model for the orthotropic honeycomb core material. The crash conditions of low-floor bus were frontal accident with speed of 60km/h. Rollover analysis were conducted according to the safety rules of European standard (ECE-R66). The results showed that the survival space for driver and passengers was secured against frontal crashworthiness and rollover of low-floor bus. Also, The modified Chang-Chang failure criterion is recommended to predict the failure mode of composite structures for crashworthiness and rollover analysis.

Design of Helical Self-Piercing Rivet for Joining Aluminum Alloy and High-Strength Steel Sheets (알루미늄 합금과 고장력 강판 접합을 위한 헬리컬 SPR의 설계)

  • Kim, W.Y.;Kim, D.B.;Park, J.G.;Kim, D.H.;Kim, K.H.;Lee, I.H.;Cho, H.Y.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.735-742
    • /
    • 2014
  • A self-piercing rivet (SPR) is a mechanical component for joining dissimilar material sheets such as those of aluminum alloy and steel. Unlike conventional rivets, the SPR directly pierces sheets without the need for drilling them beforehand. However, the regular SPR can undergo buckling when it pierces a high-strength steel sheet, warranting the design of a helical SPR. In this study, the joining and forging processes using the helical SPR were simulated using the commercial FEM code, DEFORM-3D. High-tensile-strength steel sheets of different strengths were joined with aluminum alloy sheets using the designed helical SPR. The simulation results were found to agree with the experimental results, validating the optimal design of a helical SPR that can pierce high-strength steel sheets.

The Study on Weldability of Boron Steel and Hot-Stamped Steel by Using Laser Heat Source (I) - Laser Weldability of Al-Si Coated Boron Steel Used for Hot Stamping Process - (레이저 열원을 이용한 보론강 및 핫스탬핑강의 용접특성에 관한 연구 (I) - 핫스탬핑 공정에 사용되는 Al-Si 코팅된 보론강의 레이저 용접특성 -)

  • Kim, Jong Do;Choi, So Young;Lee, Su Jin;Suh, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1367-1372
    • /
    • 2014
  • As the awareness of the environmental crisis has recently increased around the world, numerous studies in the transport industry have been conducted to solve this problem through lightweight car bodies. The hot-stamping process has been presented as solution to achieve a light weight. Hot-stamping is a method that is used to obtain ultra-high strength steel (1,500 MPa or greater) by simultaneously forming and cooling boron steel in a press die after heating it to a temperature of $900^{\circ}C$ or above. This study involved a, fundamental examination of laser parameters to investigate the laser weldability of boron steel. As a result, the following optimum parameters for the shielding gas were found: Q = 20 l/min, ${\alpha}=40^{\circ}$, d = 20mm, and l = 0 mm. The hardness of butt weldment increasesed sharply as a result of martensite formation at the fusion zone.

A Study on the Prediction of Nugget Diameter of Resistance Spot Welded Part of 1.2GPa Ultra High Strength TRIP Steel for Vehicle (차체용 1.2GPa급 초고장력 TRIP강판의 저항 점 용접부 너겟 지름 예측에 관한 연구)

  • Shin, Seok-Woo;Lee, Jong-Hun;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.52-60
    • /
    • 2018
  • In the automobile industry, in order to increase the fuel efficiency and conform to the safety regulations, it is necessary to make the vehicles as light as possible. Therefore, it is crucial to manufacture dual phase steels, complex phases steels, MS steels, TRIP steels, and TWIP from high strength steels with a tensile strength of 700Mpa or more. In order to apply ultra-high tensile strength steel to the body, the welding process is essential. Resistance spot welding, which is advantageous in terms of its cost, is used in more than 80% of cases in body welding. It is generally accepted that ultra-high tensile strength steel has poor weldability, because its alloy element content is increased to improve its strength. In the case of the resistance spot welding of ultra-high tensile steel, it has been reported that the proper welding condition area is reduced and interfacial fracture and partial interfacial fracture occur in the weld zone. Therefore, research into the welding quality judgment that can predict the defect and quality in real time is being actively conducted. In this study, the dynamic resistance of the weld was monitored using the secondary circuit process variables detected during resistance spot welding, and the factors necessary for the determination of the welding quality were extracted from the dynamic resistance pattern. The correlations between the extracted factors and the weld quality were analyzed and a regression analysis was carried out using highly correlated pendulums. Based on this research, a regression model that can be applied to the field was proposed.

Fatigue Strength Evaluation of Carbody and Bogie Frame for the Light Rail Transit System (경량전철에 대한 차체 및 대차틀의 피로강도평가)

  • Lee, Eun-Chul;Lee, Joon-Seong;Choi, Yoon-Jong;Lee, Jung-Hwan;Suh, Myung-Won;Lee, Ho-Yong;Lee, Yang-Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.77-83
    • /
    • 2008
  • In terms of saving costs, energy and materials, the weight of cars has been gradually reduced by optimizing design of structure, which also gives us good performance. In compliance with this, it should satisfy the lifetime of cars for 25 years under the operation. The purpose of this study is to evaluate the strength of fatigue using date from strain gauges attached carbody and bogie frame. This dynamic stress can be evaluated using S-N curve based on stress amplitude. Modified S-N curve by CORTON-DOLAN is used for more conservative and substantial evaluation. In addition, !he loadings itself of carbody and bogie frame are considered by calculating the rate of the differences which are occurred between empty car and fuiiy occupied car with passengers. Rainflow cycle counting method is applied to arrange the stress data for the modified S-N curve to predict lifetime of the materials. Conclusively the cumulative damages are not only calculated by Miner's Rule, but the safety factors are also determined by Goodman diagram.

Durability Assessment of CFRP Lower Control Arm Using Stress-Life Method (응력수명법을 이용한 탄소섬유강화복합재 로어 컨트롤 아암의 내구성 평가)

  • Jang, Jaeik;Lim, Juhee;Lee, Jongsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1131-1137
    • /
    • 2017
  • Recently, regulations on fuel efficiency and $CO_2$ emissions have been reinforced in automobile industries. As a result, many companies make an effort to satisfy these regulations by adapting composite materials to the automobile body as well as its components. In particular, the lower control arm in the suspension system is subjected to heavy loads and is designed to be thick to meet operating loads. Therefore, it is essential for the lower control arm to reduce weight and to secure the durability assessment. In this paper, we conducted structural analysis by performing stress and stiffness analysis under given load conditions through finite element analysis, and verified whether it satisfies the load and stiffness conditions. The inertia relief method is adapted to the process of analysis, and the principal stress is used as a criterion for evaluation. Based on these results, the durability assessment is carried out using the stress-life method.

Fatigue Test of Remote CO2 Laser Welded Joints and Its Analysis (원격 CO2 레이저 용접이음에 대한 피로시험과 해석)

  • Chu, Seok-Jae;Zhao, Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1213-1219
    • /
    • 2012
  • A remote $CO_2$ laser system can rapidly change both the distance and the direction of the laser beam by moving a lens and rotating mirrors. It is then easy to weld complex patterns of weld lines. A conventional spot weld joint specimen and a remote $CO_2$ laser weld joint specimen with complex weld line patterns were prepared and tested both statically and dynamically. The relationships between the fatigue strength, i. e. the maximum cyclic force, and the fatigue life were obtained. The fatigue strength of the tested welded joints at two million cycles was found to be approximately 10% of the static strength. Furthermore, it was observed that the fatigue fracture mode changed with the level of the applied cyclic force. The fatigue crack origins were confirmed as the highest stress points found in the structural analysis. The maximum cyclic stress for different weld patterns converges as the fatigue life approaches two million cycles.