• Title/Summary/Keyword: 경계 특성

Search Result 2,878, Processing Time 0.029 seconds

Analysis of Eelasto-Plastic Buckling Characteristics of Plates Using Eigenvalue Formulation (고유치문제 형성에 의한 평면판의 탄소성 좌굴 특성 해석)

  • 황학주;김문겸;이승원;김소운
    • Computational Structural Engineering
    • /
    • v.4 no.1
    • /
    • pp.73-82
    • /
    • 1991
  • Recently, the finite element method has been sucessfully extended to treat the rather complex phenomena such as nonlinear buckling problems which are of considerable practical interest. In this study, a finite element program to evaluate the elasto-plastic buckling stress is developed. The Stowell's deformation theory for the plastic buckling of flat plates, which is in good agreement with experimental results, is used to evaluate bending stiffness matrix. A bifurcation analysis is performed to compute the elasto-plastic buckling stress. The subspace iteration method is employed to find the eigenvalues. The results are compared with corresponding exact solutions to the governing equations presented by Stowell and also with experimental data due to Pride. The developed program is applied to obtain elastic and elasto-plastic buckling stresses for various loading cases. The effect of different plate aspect ratio is also investigated.

  • PDF

A Numerical Analysis on the Flow Characteristics within Blades of A Partial Admission Supersonic Turbine (부분입사형 초음속 터빈 익렬내 유동 특성에 관한 수치적 연구)

  • Shin, Bong-Gun;Cho, Jong-Jae;Jeong, Soo-In;Kim, Kui-Soon;Lee, Eun-Seok
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1738-1743
    • /
    • 2004
  • Turbo-pump system, an essential component of liquid rockets and induced weapons, adopts a partial admission axial turbine which drives pump. And the turbine of a turbo-pump system is usually operated at supersonic condition due to its high loading chracteristics. Therefore, reseaches about flow and performance characteristics of a partial admission supersonic turbine must be preceeded to progress the aerospace and defense industries as well as the development of turbo-pump systems. In this study, flow characterisitics within blades of the partial admission supersonic turbine are numerically investigated by using Fine Turbo, a commercial CFD Code. Before performing the numercial analyses, to verify accuracy of the numerical result computed by Fine Turbo, I performed the comparison between the numerical results with J.J.Cho' experimental results. It is found that the numerical results show good agreement with the experimental results. Computations about the partial admission supersonic turbine have been performed to investigate flow characteristics including shock patterns. It is also found that the flow and performance of partial admission supersonic turbine are largely depend on shocks ocurred in the nozzle and at the leading edge of blades, expansion or compression at exit of nozzle and separations occurred in passage.

  • PDF

Numerical Study on Aerodynamic Characteristic of the Moving Circular Cylinder Near the Wavy Wall (파형벽면에 근접하여 이동하는 원형실린더의 공력특성의 수치해석)

  • Kim, Hyung-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.107-115
    • /
    • 2009
  • A Computational study was carried out in order to investigate the aerodynamic characteristics of circular cylinder moving near the wavy wall at a low Reynolds number of 50. Lattice Boltzmann method was used to simulate the flow field and immersed boundary method was combined to represent the moving cylinder and wavy wall regardless of the constructed grid in the domain. The aerodynamics characteristics of the cylinder moving near the wavy wall were represented by the comparing the lifting coefficients with various altitudes (H/D) and wave length and amplitudes of wavy wall. It indicated that the twice of increasing-decreasing variations of lifting coefficient are obtained while the cylinder moves near the wavy wall. The first variation is obtained where the cylinder locates near the peak of the wavy wall. Another variation occurs when the distance to the wavy wall becomes longer after passing the peak. It was also classified that three different patterns of relation between the lifting and drag coefficient of the cylinder. However, the classification is limited to the case of the same order of altitude, amplitude and wave length of the wavy wall.

Analysis of Normal Shock-Wave Oscillation in a Supersonic Diffuser (초음속 디퓨져에서 발생하는 수직충격파 진동의 이론해석)

  • 김희동
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.3
    • /
    • pp.36-46
    • /
    • 1998
  • Shock-wave in a supersonic diffuser flow cannot be stable even in the given pressure ratio which remains constant over time, and oscillates around a certain time-mean position. In the present study, oscillation of a normal shock-wave in a supersonic diffuser was analyzed by a small perturbation method. Upstream pressure perturbation was applied to a supersonic diffuser flow with a normal shock-wave. Stability of shock-wave was investigated by considering the diffuser pressure recovery and frequency of the pressure perturbation. The results obtained show that a stable oscillation of weak normal shock-wave is obtainable for the flow with the Mach number over 1.74. The ratio of sound pressures downstream to upstream of the shock wave increases with increase of the Mach number. The present results agree well with other analytical and experimental results.

  • PDF

A Study on Eigen-properties of a 3-Dim. Resonant Cavity by Krylov-Schur Iteration Method (Krylov-Schur 순환법을 이용한 3-차원 원통구조 도파관의 고유특성 연구)

  • Kim, Yeong Min;Lim, Jong Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.142-148
    • /
    • 2014
  • Krylov-Schur iteration method has been applied to the 3-Dim. resonant cavity of a cylindrical form. The vector Helmholtz equation has been analysed for the resonant field strength in homogeneous media by FEM. An eigen-equation has been constructed from element equations basing on tangential edges of the tetrahedra element. This equation made up of two square matrices associated with the curl-curl form of the Helmholtz operator. By performing Krylov-Schur iteration loops on them, Eigen-values and their modes have been determined from the diagonal components of the Schur matrices and its transforming matrices. Eigen-pairs as a result have been revealed visually in the schematic representations. The spectra have been compared with each other to identify the effect of boundary conditions.

The Evolving Sound Art (Part 1): Sonic Singularities and Chronicle Traces (진화하는 사운드 아트 (1부): 소리의 특이성과 시대적 기록)

  • Lee, Irene Eunyoung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.1
    • /
    • pp.395-401
    • /
    • 2020
  • Sound Art retains heterogeneous and borderless inborn-characteristics on it. Despite it is a non-mainstream art which could not foster fertile soil to bring up many established artists yet, the domestic area is keep growing and expanding. And now it will soon be that time of overcoming the debates between the art world and the music world to widely embrace de-facto artworks and practices, and bringing more quality critiques. This article talks about a concise history of sound art by addressing some singularities and chronicle traces of it which may be helpful information to lead into more opened future discussion forums in the domestic sound art field.

Numerical Study of the Flow Field Around an Axisymmetric Body with Integrated Propulsors (복합추진장치가 포함된 축대칭 물체 주위유동의 수치적 연구)

  • Jong-Woo Ahn;Il-Sung Moon;Sang-Woo Pyo;Jung-Chun Suh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.1-8
    • /
    • 1999
  • Numerical study is carried out to investigate flow characteristics around an axisymmetric body with and without an integrated propulsor. The incompressible Reynolds-Averaged Navier-Stokes(RANS) equations are also solved using the finite volume method and the standard $k-\varepsilon$ turbulence model for turbulence closure. In order to investigate the propulsor-hull interaction, the induced velocity calculated by surface panel methods is utilized for the boundary condition at the propeller plane. The calculated results are compared to the experimental results. It is considered that the present numerical code can be used for design of an integrated propulsor.

  • PDF

Poly-gate Quantization Effect in Double-Gate MOSFET (폴리 게이트의 양자효과에 의한 Double-Gate MOSFET의 특성 변화 연구)

  • 박지선;이승준;신형순
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.8
    • /
    • pp.17-24
    • /
    • 2004
  • Quantum effects in the poly-gate are analyzed in two dimensions using the density-gradient method, and their impact on the short-channel effect of double-gate MOSFETs is investigated. The 2-D effects of quantum mechanical depletion at the gate to sidewall oxide is identified as the cause of large charge-dipole formation at the corner of the gate. The bias dependence of the charge dipole shows that the magnitude of the dipole peak-value increases in the subthreshold region and there is a large difference in carrier and potential distribution compared to the classical solution. Using evanescent-nude analysis, it is found that the quantum effect in the poly-gate substantially increases the short-channel effect and it is more significant than the quantum effect in the Si film. The penetration of potential contours into the poly-gate due to the dipole formation at the drain side of the gate corner is identified as the reason for the substantial increase in short-channel effects.

Measurements of High-frequency Sea Surface Backscattering Signals (고주파 해수면 후방산란 신호 측정)

  • 최지웅;나정열;박경주;윤관섭;박정수;나영남
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.421-429
    • /
    • 2002
  • Sea surface backscattering signal measurements were conducted in the shallow waters off the east coast of Korea to study the acoustic wave scattering from the sea surface. The grazing angles of wave range from 20° to 40° with a frequency of 60 kHz. The wind speed and surface roughness of the experiment area were 3 m/os and below 1 m, respectively. The measured acoustic backscattering strengths greatly exceed the composite roughness predictions at low grazing angles. To account for this discrepancy, the scattering strengths due to a near-surface bubble layer were considered. The prediction with bubble contribution was found to be in good agreement with the experimental measurement.

Numerical Study of Turbulence Modeling for Analysis of Combustion Instabilities in Rocket Motor (로켓엔진의 연소 불안정 해석을 위한 난류 모델링의 수치적 연구)

  • 임석규;노태성
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.2
    • /
    • pp.75-84
    • /
    • 2002
  • A numerical analysis of unsteady motion in solid rocket motors with a nozzle has been conducted. The numerical formulation including modified $\kappa$-$\varepsilon$ turbulence model treats the complete conservation equation for the gas phase and the one-dimensional equations in the radial direction for the condensed phase. A fully coupled implicit scheme based on a dual time-stepping integration algorithm has been adopted to solve the governing equations. After obtaining a steady state solution, pulse and periodic oscillations of pressure are imposed at the head-end to simulate acoustic oscillations of a travelling-wave motion in the combustion chamber. Various steady and unsteady state features in the combustion chamber of a rocket motor has been analyzed as results of numerical calculations.