• 제목/요약/키워드: 경계 길이

Search Result 495, Processing Time 0.033 seconds

Expected Segmentation of the Chugaryung Fault System Estimated by the Gravity Field Interpretation (추가령단층대의 중력장 데이터 해석)

  • Choi, Sungchan;Choi, Eun-Kyeong;Kim, Sung-Wook;Lee, Young-Cheol
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.743-752
    • /
    • 2021
  • The three-dimensional distribution of the fault was evaluated using gravity field interpretation such as curvature analysis and Euler deconvolution in the Seoul-Gyeonggi region where the Chugaryeong fault zone was developed. In addition, earthquakes that occurred after 2000 and the location of faults were compared. In Bouguer anomaly of Chugaryeong faults, the Pocheon Fault is an approximately 100 km fault that is extended from the northern part of Gyeonggi Province to the west coast through the central part of Seoul. Considering the frequency of epicenters is high, there is a possibility of an active fault. The Wangsukcheon Fault is divided into the northeast and southwest parts of Seoul, but it shows that the fault is connected underground in the bouguer anomaly. The magnitude 3.0 earthquake that occurred in Siheung city in 2010 occurred in an anticipated fault (aF) that developed in the north-south direction. In the western region of the Dongducheon Fault (≒5,500 m), the density boundary of the rock mass is deeper than that in the eastern region (≒4,000 m), suggesting that the tectonic movements of the western and eastern regions of the Dongducheon Fault is different. The maximum depth of the fracture zone developed in the Dongducheon Fault is about 6,500 m, and it is the deepest in the research area. It is estimated that the fracture zone extends to a depth of about 6,000 m for the Pocheon Fault, about 5,000 m for the Wangsukcheon Fault, and about 6,000 m for the Gyeonggang Fault.

Experiment and Analysis of Backscattering Signals According to Presence or Absence of Chloroform (클로로폼 침적 유무에 따른 후방산란신호 측정 실험 및 분석)

  • Him Chan Seo;Jee Woong Choi;Yongmyung Kim;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.18-22
    • /
    • 2022
  • Because it is difficult to apply direct and optical detection techniques to sunken hazardous and noxious substances (HNS), effective acoustic detection techniques are required to detect sunken HNS in water. In this study, the possibility of acoustic detection of sunken HNS was investigated through backscattering signal measurement experiments using chloroform, a sunken HNS. After establishing a pool in an acrylic tank, backscattering signals were measured according to the presences or absence of chloroform by varying the grazing angle from 90° to 50° in 0.5° intervals using a pan&tilt system. A directional transducer transmitted and received sinusoidal signals with a frequency of 200 kHz and a pulse length of 25 ㎲ in a monostatic state. When chloroform was deposited, the received level of the backscattering signal at the interface between water and chloroform became low at a grazing angle of approximately 80° or smaller. Based on the backscattering signal results obtained at the interface between water and chloroform, the possibility of acoustic detection of sunken HNS was demonstrated.

Development and Application of Convergence Education about Support Vector Machine for Elementary Learners (초등 학습자를 위한 서포트 벡터 머신 융합 교육 프로그램의 개발과 적용)

  • Yuri Hwang;Namje Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.95-103
    • /
    • 2023
  • This paper proposes an artificial intelligence convergence education program for teaching the main concept and principle of Support Vector Machines(SVM) at elementary schools. The developed program, based on Jeju's natural environment theme, explains the decision boundary and margin of SVM by vertical and parallel from 4th grade mathematics curriculum. As a result of applying the developed program to 3rd and 5th graders, most students intuitively inferred the location of the decision boundary. The overall performance accuracy and rate of reasonable inference of 5th graders were higher. However, in the self-evaluation of understanding, the average value was higher in the 3rd grade, contrary to the actual understanding. This was due to the fact that junior learners had a greater tendency to feel satisfaction and achievement. On the other hand, senior learners presented more meaningful post-class questions based on their motivation for further exploration. We would like to find effective ways for artificial intelligence convergence education for elementary school students.

A Study on Friction Anisotropy between Sand and Surface Asperities of Plate Using Modified Direct Shear Test (수정된 직접 전단 시험기를 이용한 모래와 표면 돌출부를 갖는 플레이트 사이의 마찰 이방성에 대한 연구)

  • Lee, Seung-Hun;Chong, Song-Hun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.2
    • /
    • pp.29-38
    • /
    • 2022
  • The friction anisotropy of shear resistance can be selectively used in geo-structures. For example, larger axially loaded deep foundation, soil nails, and tiebacks increase load carrying capacity due to induced large shear resistance while pile penetration and soil sampling produce minimal shear resistance. Previous studies confirmed direction-dependent shear resistance induced by interface between soil and surface asperity of plate inspired by geometrical shape of snake scale. The aim of this paper is to quantitatively evaluate interface friction angle with different surface asperities. Using the modified direct shear test, a total of 51 cases, which sand are prepared at the relative density of 40%, are conduced including 9 plates, two shear direction (shearing direction against the height of surface asperity is increased or decreased during shearing test), and three initial vertical stress (100 kPa, 200 kPa, 300 kPa). Experimental results show that shear stress is increased with higher height of surface asperity, shorter length of surface asperity, and the shearing direction that the height of surface asperity increases. Also, interface friction angle is decreased with larger surface asperity ratio, and shearing direction with increasing height of surface asperity produces larger interface friction angle regardless of the surface asperity ratio.

An analyses of the noise reduction effect of vegetation noise barrier using scaled model experiments (모형실험을 통한 식생형 방음벽의 소음저감 효과 분석)

  • Haan, Chan-Hoon;Hong, Seong-Shin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.3
    • /
    • pp.223-233
    • /
    • 2016
  • Design of a vegetation type sound barrier was presented as a noise barrier on the boundary of neighborhood facilities including schools, and apartments. The suggested noise barrier is made of unit blocks that are to be formed by stacking over the wall structure containing the plant and soils in the blocks. The advantage of the vegetation noise barrier is to acquire not only sound absorptive effects of plants and soils, but also sound diffusive effect caused by the irregular surface of the barrier which could eventually mitigate the noise. First, the optimum size of the units to obtain the highest noise reduction was investigated using 1/10 scaled model experiment, and sound attenuation experiments were carried out using a 1/2 mock-up model which is 2 m high and 5 m long. Total 1,137 unit blocks were made of synthetic woods with the size of $10{\times}10{\times}9cm$. These unit blocks were installed on the both side of the 1/2 mock-up steel framed noise barrier. As a result, it was revealed that the block typed vegetation noise barrier has 7 dB higher insertion loss in comparison with the general plane noise barrier. Also, it was found that the appropriate size of unit blocks is $20{\times}20cm$ which has large effect of sound insertion loss.

Comparison and Examination of the Calculating Hydrological Geographic Parameters Using GIS (GIS를 이용한 수문학적 지형인자 산정에 대한 비교검토)

  • Kim, Kyung-Tak;Choi, Yun-Seok;Lee, Hyo-Jung
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.1
    • /
    • pp.25-39
    • /
    • 2010
  • Recently, GIS softwares such as WMS, ArcHydro, and HyGIS which can calculate hydrological geographic parameters are popularized. These softwares have the functions to calculate various geographic parameters which are used in water resources from DEM (Digital Elevation Model). In this study, hydrological geographic parameters calculated by WMS and ArcHydro are compared and examined with them from HyGIS to evaluate the applicability of the parameters from HyGIS. Bochungcheon (Riv.), Wicheon (Riv.), Pyungchanggang (Riv.), Gyungancheon (Riv.), Naerincheon (Riv.), and Imjingang (Riv.) watersheds are selected for this study, and the shape of watershed, watershed area, watershed slope, the average slope of watershed, main stream length, main stream slope, maximum flow distance, and the slope of maximum flow distance are calculated to compare and examine the characteristics. Study results show that the average relative error of 7 geographic parameters from all the watersheds is 4.77 %, and all the watershed boundaries are very similar. So, all the geographic parameters calculated by each software show very similar value, and the geographic parameters calculated by HyGIS can be applied to water resources with WMS and ArcHydro which have been generally used.

Subsurtace Geological Structure of the Downstream Area of the Jangsung Lake (장성호 하류지역의 지하지질구조)

  • 김성균;김용준;오진용;김민선;서구원
    • The Journal of Engineering Geology
    • /
    • v.7 no.2
    • /
    • pp.101-112
    • /
    • 1997
  • Gravity and electrical resistivity surveys were carried out across the Kwangju fault in the downstream area of the Jangsung Lake, to investigate the location and geometrical feature of the fault. In the resistivity survey, dipole - dipole array method was adopted for 3 survey lines of which length and electrode spacing are 500m and 25m, respectively. Resistivity data are interpreted with aid of computer program "RESIS" which is widely used in resistivity data analysis and two dimensional resistivity profiles are obtained for 3 survey lines. Two large fracture zones relevant to the Kwangju fault are identified in the resistivity profiles. The total of 80 gravity data are observed with the mean spacing of 40 m and the exact leveling is accompanied to obtain more precise gravity anomalies. The subterranean density discontinuities calculated from the inverse method are appeared at the depths of 650rn and 120m. It is considered that the deep discontinuity indicates boundary between Jurassic granites and oveflying Cretaceous tuff formation. while, the shallow discontinuity is interpreted to be a boundary between alluvial deposits and basements. The subsurface geological structure to satisfy the observed Bouguer anomaly is determined from the iterative forward method in which results from existing surface geological informations, the inverse method, and from the resistivity interpretations are employed as an iuitial model. In conclusion, Kwangju fault is appeared to be a high angle normal fault mainly formed in tension stress filed.

  • PDF

Development of persimmon harvest apparatus -Development of detachment device (감 수확기구 개발(1) - 탈과장치 개발 -)

  • Woo, D.G.;Kim, T.H.
    • Current Research on Agriculture and Life Sciences
    • /
    • v.27
    • /
    • pp.1-6
    • /
    • 2009
  • Persimmon occupied the second largest cultivation area next to apple among the fruits in Korea. Since 70 % of its cultivating field is located at slope, the efficiency of its harvesting operation is very low. Also, the traditional persimmon harvest apparatus does not seem to be efficient to use due to a structural problem. In this paper, the author has analyzed the physical properties of persimmon friut-stem system and compared detachment force with developed persimmon harvest apparatus and traditional persimmon harvest apparatus in order to solve the problems mentioned above. The results of the research are summarized as follows : 1. The weight of the persimmon is shown as 157 g on average, the lengths of stem's major axis and minor axis is shown as 4.6 mm and 3.7 mm on average, respectively, sectional area of stem is shown as $13.9mm^2$ on average and the stem length is shown as 13.6 mm on average. 2 In case of the traditional persimmon harvest apparatus, the detachment force needed when a persimmon was detached from its stem was shown as 86.3 N on average. 3. In case of the developed persimmon harvest apparatus, detachment force needed when a persimmon was detached from its stem was shown as 72.6 N on average.

  • PDF

A Study on Development of Evaluation Method on Riverine Ecobelt (수변 생태벨트 평가방법 개발에 관한 연구)

  • Cho, Yong-Hyeon;Choi, Dae-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.1
    • /
    • pp.123-132
    • /
    • 2014
  • This study aims to develop the diagnostic evaluation method of the riverine ecobelt for construction, conservation, and maintenance of the riverine ecobelt. The value indices in the proposed evaluation method are composed of total 5 fields and 19 elements. The 5 fields are flood control, environmental function, growth of plants, ecobelt function, and restoration potential. Flood control field is composed of total 3 elements such as length, width, and density of green area. Environmental function field is composed of 4 elements such as park use, landscape boundary and edge, microclimate control, non-point pollution control. Growth of plants field is composed of 6 elements such as species composition, forest height, stratum structure, vine plants, plant vitality, and succession of plants. Ecobelt function field is composed of 4 elements such as longitudinal connectivity, lateral connectivity, in-stream forest or habitat, roads on bank top. Restoration potential field is composed of 2 elements such as landform and land use of the immediate vicinity. The score system ranging 1~4 was adopted. The weighting parameters of elements were unified with each other. The final grade system ranging 1~5(1: very good~5: very bad) was adopted, and the final grade was evaluated by the mean values of each field. According to the test application of the diagnostic evaluation method of the riverine ecobelt, the final grades showed effectively the real condition of each site.

Investigation and Greenhouse Heat Loss based on Areas and Weather Information (온실 열손실 분석용 기상정보 및 온실방위 조사 분석)

  • Kim, Young Hwa;Kang, Sukwon;Paek, Yee;Jang, Jae Kyung;Sung, Je Hoon;Kang, Yeon Koo
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.64-70
    • /
    • 2018
  • In this study, eleven major coastal areas were selected and the climate environment and the greenhouse direction were analyzed. This research investigates the greenhouse heat loss according to the wind environment at target areas. The target areas were selected based on heated greenhouse cultivation area and wind environment standard. Temperature, wind speed, and wind direction among weather data for 30 years were collected and analyzed. The data were divided into the minimum, average, and maximum temperatures and the Meteorological Agency criteria applied to the weather and wind direction criteria. Data were collected in the range of $0{\sim}180^{\circ}$ considering the symmetry of the shape of the greenhouse. In addition, the wind direction is different for each region and the applied wind direction can be different when referring to the longitudinal direction of the greenhouse and the data are collected in the range of $0{\sim}90^{\circ}$. The results of this study are expected to be used to calculate the heating load of greenhouse installed in places wind speed high.