• Title/Summary/Keyword: 경간비

Search Result 288, Processing Time 0.022 seconds

Regularization Length in Single Plane Cable-stayed Concrete Bridge (1면 케이블 콘크리트 사장교의 응력 불균일 영역길이)

  • Kang, Ho-Jun;Jang, Jae-Youp;Kim, Gwang-Soo;Lee, Hwan-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.10-13
    • /
    • 2010
  • 세그먼트 자중 등에 의한 휨모멘트와 케이블 수직압축력에 의한 합성응력이 발생되고 바닥판 경간비가 변하는 사장교의 시공단계에서는 전단지연의 영향범위가 다를 수 있다. 이 연구에서는 1면 케이블 콘크리트 박스 사장교를 대상으로 시공단계시 보강형에 고려되어야 할 합성응력에 의한 유효플랜지폭을 분석하였다. 그 결과 바닥판 경간비가 0.38 이하의 범위에서 보강형의 전폭을 유효플랜지폭으로 적용할 수 있는 것으로 해석되었다. 따라서 시공단계시 변화되는 바닥판 경간비의 크기에 관계없이 전폭을 유효플랜지폭으로 반영하는 실무관행은 안전측 설계가 되지 못할 수 가 있다. 바닥판 경간비가 작아짐에 따라서는 전폭과 캔틸레버 구조계로 유효플랜지폭을 결정하는 것이 타당하다. 이 연구에서는 수직력에 대한 도로교설계기준의 유효플랜지폭 규정에 대한 평가도 수행하였다.

  • PDF

Determination of Effective Flange Width in Single Plane Cable-Stayed Concrete Bridge (1면 케이블 콘크리트 사장교의 유효플랜지폭 결정에 관한 연구)

  • Lee, Hwan-Woo;Kim, Kwang-Soo;Kang, Ho-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.343-351
    • /
    • 2010
  • Bending and axial compressive stresses are distributed across the whole upper flange of a box girder bridge which has the span-to-depth ratio (B/L) of below 0.5, according to Korea Bridge Design Specifications (Minister of Land, Transport and Maritime Affairs, 2005). Shear lag phenomenon, however, can take place in the construction phase of cable-stayed bridge, in which stresses combining bending moment due to dead weight and cable vertical compression are induced. This study aims to analyze the effective width of flange over which composite stresses are given, which should be calculated during the construction phase of stiffening girder of single plane cable-stayed box girder bridge. The study results indicate that the full width of stiffening girder can be regarded as the effective flange width when the span-to-depth ratio for the deck is below 0.38. In other words, the area, where shear lag is taken into consideration, is larger than the width of box girder in single plane cable-stayed box girder bridges. Therefore, the current practice of considering the full width as the effective flange width regardless of changes of the span-to-depth ratio during the construction stage can produce an unsafe bridge. If the effective flange width is determined according to the single span structural system in the early stage of construction when the span-to depth ratio for the deck is high and composite stresses of every part expect each end of the bridge are calculated, it can result in a safe structural design. Since the span-to-depth ratio gradually decreases, however, it is appropriate to determine the effective width of flange on the basis of the full width and the cantilever structural system.

Modeling of Shear Mechanism of RC Deep Beams Incorporating Bond Action between Re-Bar and Concrete (주근의 부착작용에 기초하는 깊은보의 전단저항 기구의 모델화)

  • Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.639-648
    • /
    • 2006
  • A shear experiment of one-way monotonic loading was carried out with the shear span ratio as the main experimental variable for reinforced concrete beam. Using the finite element analysis as the experimental analysis tool and the analysis method to compute the shear resistance of small shear span ratio, a new macro-model composed of crooked main strut and sub strut is proposed in consideration of the effect of bond action between re-bar and concrete based on the experimental result. The experimental finding affirmed the validity of the proposed macro-model when the shear span ratio was at or below 0.75 and confirmed that the experimental result was the most consistent with the computed analysis result when the effective factor of concrete compressive strength was set at 0.75.

Landscape Preference and Image Property according to Middle Span and Sag Ratio of the Suspension Bridge (현수교의 중앙경간과 새그비에 따른 경관선호도와 이미지특성 분석)

  • Jang, Young-Ju;Son, Seung-Neo;Kum, Ki-Jung;Oh, Heung-Un
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • This study is aimed at suggesting a plan for creating a landscape environment by grasping a landscape preference according to the change of middle span and sag ratio which is a consideration factor when designing the suspension bridge representing long-span bridges and image property of the bridge while applying SD method to a relation between landscape preference and image factor, and a connection of design element with image factor. An analysis on landscape preference about the bridge landscape showed from what the longer the length of middle span, the extent of sag ratio of preference decreased, the longer the middle span low sag ratio was preferred and the higher the landscape preference became. In landscape preference and image factor, the attribute of sag ratio with high landscape preference was all positively correlated with "stability", "plasticity", and "aesthetic" but an influence of "plasticity" was insignificant. In the relation between design element and image factor, the factor of middle span and sag ratio was more related to the factor of "stability" and the lower the sag ratio and the longer the middle span, the higher the "stability" was rated. This result showed the image property of "plasticity" was insignificant among the one of preference in landscape and to highlight the one of "plasticity" a complementary experiment was done with a change in balance and symmetry elements not in proportional element of middle span and sag ratio. The result showed the image property of "plasticity" was more highlighted in the suspension bridge of 3-tower and different bilateral symmetry at sag, and when designing the landscape of suspension bridge later on, the elements of balance and symmetry as well as the proportional element should be considered and reflected in the design.

A Study on Controlling the Negative Reaction of Cable Stayed Bridge Considering Constructability and Economy : Vam Cong Cable Stayed Bridge in Vietnam (시공성 및 경제성을 고려한 사장교 부반력 제어 연구 : 베트남 밤콩 사장교 사례)

  • Lee, Yong-Jin;Lho, Byeong-Cheol;Kim, Chang-Kyo;Bae, Sang-Woon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.87-95
    • /
    • 2014
  • Cable stayed bridge is supported by cables and the negative reaction occurs by cables at anchor pier. To solve this problem, the proper side span ratio and the negative reaction measure of anchor pier are needed. And structural system of cable stayed bridge is determined by solution of the negative reaction as installation of the intermediate pier, counterweight and so on. In feasibility study, Vam Cong bridge was planned as 5 span cable stayed bridge. However, it was changed to 3 span cable stayed bridge in detailed design because of constructability and economy. The intermediate pier was excluded in order to improve the constructability, and side span ratio increased to control the negative reaction. As a result, Vam Cong bridge secure constructability, structural safety, and efficiency.

Equivalent Suspension Bridge Model for Tower Design of Multi-span Suspension Bridges (다경간 현수교 주탑 설계를 위한 등가 현수교 모델)

  • Choi, Dong-Ho;Na, Ho-Sung;Yi, Ji-Yop;Gwon, Sun-Gil
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.669-677
    • /
    • 2011
  • The multi-span suspension bridge generally has more than three towers and two main spans. To economically and effectively design a multi-span suspension bridge, the proper stiffness ratio of the center tower to the side tower must be determined. This study was conducted to propose a method of figuring out briefly the structural behavior of the towers in a multi-span suspension bridge. In the equivalent suspension bridge model, the main cable of the multi-span suspension bridge is idealized as an equivalent cable spring, and the external loads of horizontal and vertical forces that were calculated using the tensile forces of the main cable were applied on top of the towers. The equilibrium equations of the equivalent multi-span suspension bridge model were derived and the equations were solved via nonlinear analysis. To verify the proposed method, a sample four-span suspension bridge with a main span length of 3,000 m was analyzed using thefinite element method. The displacements and moment reactions of each tower in the proposed method were compared with the FEM analysis results. Consequently, the results of the analysis of the equivalent suspension bridge model tended to be consistent with the results of the FEM analysis.

Effects of Shear Span-to-depth Ratio and Tensile Longitudinal Reinforcement Ratio on Minimum Shear Reinforcement Ratio of RC Beams (전단경간비와 주인장철근비가 철근콘크리트 보의 최소전단철근비에 미치는 영향)

  • Lee Jung-Yoon;Kim Wook-Yeon;Kim Sang-Woo;Lee Bum-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.795-803
    • /
    • 2004
  • To prevent the shear failure that occurs abruptly with no sufficient warning, the minimum amount of shear reinforcement should be provided to reinforced concrete(RC) beams. The minimum amount of shear reinforcement of RC beams is influenced by not only compressive strength of concrete but also shear span-to-depth ratio and ratio of tensile longitudinal reinforcement. In this paper, 14 RC beams were tested in order to observe the influences of shear span-to-depth ratio, ratio of tensile longitudinal reinforcement, and compressive strength of concrete. The test results indicated that the rate of shear strength to the diagonal cracking strength of RC beams with the same amount of shear reinforcement increased as the ratio of tensile longitudinal reinforcement increased, while it decreased as the shear span-to-depth ratio increased. The observed test results were compared with the calculated results by the current ACI 318-02 Building Code and the proposed equation.

Free Vibrations of Multispan Continuous Arches (다경간 연속 아치의 자유진동 해석)

  • 이병구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.2
    • /
    • pp.53-63
    • /
    • 1995
  • 본 논문의 다경간 연속아치의 자유진동에 관한 연구이다. 다경간 연속아치의 고유진 동수 및 진ㄷㅇ형을 산출하기 위하여 내부지점의 지점조건에 다른 경계조건식을 유도하였다. 아치의 선형은 포물선을 택하였으며, 회전-로울러-회전, 고정-회전-고정의 지점 조건을 갖는 2경간 연속아치에 대한 수치해석 결과를 제시하였다. Runge-Kutta maethod을 이용 하였다. 실제 수치해석예에서는 회전관성이 고유진동수에 미치는 영향을 고찰 하였으며, 무차원 고유진동수와 아치높이 지간길이비 및 세장비 사이의 관계를 분석하였다. 또한 실험을 토아여 이론적인 해석결과를 검증하였다.

  • PDF

Capacity Evaluation of High Strength SFRC Beams according to Shear Span to Depth Ratio (전단경간비에 따른 고강도 SFRC보의 성능 평가)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.76-83
    • /
    • 2014
  • The purpose of this study is to evaluate the shear strengthening effect of steel fiber in high strength SFRC beams. For this purpose, 13th specimens are prepared and structural tests are performed. Testing variables are shear span to depth ratio, steel fiber volume fraction, shear strengthening ratio in 60 MPa SFRC concrete. From the reviewing of previous researches and analyzing of material and member test results, shear span to depth ratio 2.5 and steel fiber volume fraction 1.0% can be having a maximum strengthening effect in steel fiber. Proposed shear strength estimation equation, which is considering steel fiber strengthening and shear span to depth ratio effect, underestimate the shear capacity of high strength SFRC beams. Therefore a detailed research on strength characteristics of high strength SFRC beams are needed.