Free Vibrations of Multispan Continuous Arches
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I. Introduction

Since arches are basic structural forms,
their dynamics and especially free vibrations
have been studied extensively. The following
references and their citations include the gov-
erning equations and significant historical lit-

erature on the in-plane vibrations of linearly
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elastic arches of various geometries and end
constraints. Such studies were critically re-
viewed by Laura and Maurizi”. Background
material for the current study was summa-
rized by Lee and Wilson®.

Briefly, such works included studies of cir-
cular arches with predictions of higher flex:

ural frequencies by Wung!®, Wolf!®), Velet-
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sos et al.’?, and Austin and Veletsos!’; stud-
1es of non-circular arches with predictions of
the lowest frequency in flexure by Romanelli
and Laural?), and in extension by Lee and
Wilson?, Wang!®, and Wang and Moorel®;
studies of arches with variable cross-section
with predictions of higher flexural frequen-
cies by Sakiyama'® and Wilson, Lee and Oh
17, Experimental studies to validate predict-
ed arch frequencies and mode shapes are
rare, although recent such studies on selected
arches were reported by Wilson, Lee and Oh
17, Perkins!?, and Lee and Wilson!®.

The main purpose of the present paper is
to investigate the free vibrations of multis-
pan continuous arches, both theoretically and
experimentally. In the most previous works
on arch vibrations, only the arches with sim-
ple span were considered. The arches with
multiple spans are reported for the first time
in this study. The boundary conditions of in-
termediate supports are derived for such
arches. The numerical results are presented
for parabolic arches with the hinged-roller-
hinged and clamped-hinged-clamped end
constraints. The computed results are then
validated with experimental results measured
from the laboratory-scale models of arches.

II. Differential equations

The geometry of the uniform, symmetric
arch with simple span is defined in Fig. 1. Its
span length, rise, and shape of the middle
surface are /[, h, and y(x), respectively. Its
radius of curvature p, a function of the co-
ordinate x, has an inclination ¢ with the x-
axis. Also shown in Fig. 1 are the positive di-
rections of radial and tangential displace-
ments, w and v, and positive direction of ro-
tation ¢ of cross-section.

A small element of the arch shown in Fig.
2 defines the positive directions for the axial

force N, the shear force @, the bending mo-
ment M, the radial inertia force Pr, the tan-

Fig. 1. Arch geometry

Q+dQ

N+dN
M+dM

Fig. 2. Loads on an arch element

gential inertia force Py, and the rotary inertia
couple T. With the inertia forces and the in-
ertia couple treated as equivalent static quan-
titles, the three equations for "dynamic equi-
librium"” of the element are

dN/d¢p+Q + pP,=0
dQ/d¢-N+ oP, =0
dM/d¢-0Q-pT =0

The equations that relate N, M and ¢ to
the displacements w and v account for axial
deformation due to N. These equations, given
by Borg and Gennaro?, are

N=EApI[(v +w)+r2o2(w"+w)]- (4)
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M=-EArzp-2(w"+w)
¢ =p-1(w'-v)

where(")=d/d¢, E is the Young’s modulus,
A 1s the cross-sectional area, and r is the ra-
dius of gyration of cross-section.

The arch is assumed to be in harmonic mo-
tion®, or each co-ordinate is proportional to
sin(wt), where @ is the angular frequency
and t is time. The inertia loadings are then

Pr e 272 AL LT IR P L PR PP PP IR PP PYPPRPRRPIPR (7)
Pi=y@2v ereoveeriiniini, (8)
T = 7(02I‘2¢

= 7w2rzp-1(w’_v) ..................... (9)

where 7y is mass per unit length.
When equations (4) and (5) are differentia-
ted once, the results are

dN/d¢=EApo I[(v'+w' )+ rlp%(w" +
w')-p 0 (v +w)-3rlp 0 3(w”

FW) ] e (10)
dM/d¢=-EAr2p 2[(w" +w’)-20 0 H(w”
FW)] e 1y

When equations (9) and (11) are substituted
into equation (3), then

Q=p-1dM/d$-RT
-EAr2p3(w” +w')-20"p!
(w” +w) ]-Ryo?rlo(w'-v)

where the index R=1 if the rotary inertia
couple 1s included and R=0 if T 1s excluded.

The following equation is obtained by
differentiating equation (12):

dQ/d¢=-EArlpo3[(w""+w")-5p ot
(W +w')+20" (40 %07 -p")
(w"+w)]-Ry o?rp [ (w"-v")
S0 P (W mV) erereeeneeninens
To facilitate the numerical studies, the fol-
lowing non-dimensional system variables are
defined. The first is the frequency parameter,

C=w s (y/EA)V2i=1,2,3, (4

which 1s written in terms of ith frequency w
=w, 1=1,2,3,... The arch rise to span length
ratio f and the slenderness ratio s are,

respectively,
F=h/] ceereerreeeeeenmmnnnnin, 15)
S = [/ Perrreceeret (16)

The co-ordinates, the displacements and the
radius of curvature are normalized by the
span length /:

E=X/1 roreereeerried an
P =y /L e (18)
S =W/ [ crrrrnerenrininiii 19
A= V/ L v 20
e=p/l ....................................... (21)

When equations (13, (4), and (7) are substi-
tuted into equation (2) and equations (14)-@21)
are used, the result is :

8" =a,8"" + (a,+Ras*C?)¢8”
+(a,-Ras™C?) 8" + (as+as™4C?) 8
+(1-Rs*C? a1’ +Ras1C2A

When equations (10}, 1% and (8) are substi-
tuted into equation (1) and. equations (14)-2])
are used, the result 1s

A"=a,8"+ (Rs4C2-1)8" +as0 +ai’
+ (as;-R)s™C2A

The coefficients in the last two equations are

a=5e el cevenn (24)
a,==2e"e1-8e"2e2-2 iiiiiieiiiiiinninnn. (25)
A= =822 crirrreriii (26)
B, =820 rerererererneieiii @n
a;=2e"e 1-8e 26 2-g22-] ++rrerrerrerrennns 29
ag= s4e4 ....................................... (29)
Ar=e S 2073 e (30)
as=e’ e 1(1452e2) orervernimnnnniennnens 31
ag=e el i 32)
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The coefficients defined by equations (24)-@32)
are computed as follows. Cast the given arch
shape y=y(x) in non-dimensional form
using equation (15), (17 and (18). This leads to

from which the slenderness ratio s is identi-
fied. By definition

¢=r/2-tan"N(dp /d&)
et =d% /d&[1+(dy/d&)?]3/2

Both ¢ and e are computed from derivatives
of equations (39 and are expressed as func-
tions of the single variable & Then ¢’ and e”
are calculated from the derivatives of equa-
tions (34} and (35 by using

e’ =de/dE-AE/dp --vvvrrrremmanrreeaainanns
e”=de’ /dE-AE/dg-++--vrrreerrererarureenn

Now the calculation procedure of the coef-

ficients defined by equations @4-32 is illus-
trated for the parabolic arch using equations
(33~(37. The general equation for the parabolic
arch of span length / and rise h(see Fig. 1) is

y=-AhF2%(x-1), O XS] eeememreennes
With equations (15), (17 and (18), the non-dimen-
sional form of equation {38 becomes

7 =-4fE(E-1), OSEST vvrereeemrnnnnns
With equation (39, the following equations are
calculated from equations 33-37):

G=7/2-tan I [-4f (2E-1)Jr-+rreereenreennns )
e =0.125f[1+16f2(2£-1)2]3/2 -..ceve. @1
e’ =1.5(2&-1)[1+16f2(2&-1)2]3/2.-....(f))
e”=0.375{[ 1+ 64f2(2&-1)7]
[1+16f2(2&-1)2]3/2 coevvrvrerennnnnn. (43

Thus, the coefficient a, through a, can be cal-

culated by the single variable &.

In order to derive the intermediate bounda-
ry conditions, the bending moment M, axial
force N and shear force Q are normalized as
follows.

m=M//EI
6 2(87+8)
n=N/2/El
=s2e’1[(A"+8)+s% 25" +6)]
q=Q/%/El
=-e3[(8" +48")-2e"e1(8"+6)]
-RC2s2e71(87-A)

---{5)

1. Boundary conditions

Now the multispan continuous arches are
introduced for deriving the boundary condi-
tions. For examples, the two symmetric arch-
es with two and three spans, respectively, -
are shown in Fig. 3, in which the H, C and R
are depicted as the hinged, clamped and roll-
er supports, respectively. As shown in this
figure, the two far ends of arches are sup-
ported by either both hinged or both clamped
constraints and the intermediate supports are
etther roller or hinged supports.

The first boundary conditions are for the
far ends. The boundary conditions of hinged
ends(£=0 for first span or &=1 for last
span) are

A = rerecretttriiiiiiiiiiiiiiisiiiiiereeeaa.. un
6 = O .......................................... (48)
G720 cereerrermrrrrieeiirinnrineeaeanes (49
]
H/C R/H H/C
"I (a) arch with two spans
H/C R/H R/H H/C

(b) arch with three spans

Fig. 3. Examples of multispan continuous
arch :
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where the last condition assures that the non
-dimensional bending moment m given by
equation (#4) 1s zero.

The boundary conditions of clamped ends
(€=0 for first span or £€=1 for last span)
are

A =0 vevrerenrenrrriiriie e (50
S = 0 cereverreeneni 651)
O =0 ceverrnreviniiiiiiiiiiiiiiiiiii e (2

where the last condition assures that the end
rotation ¢ given by equation (6) is zero.

The second boundary conditions are for
the intermediate supports which are either
roller or hinged supports. The undeformed
and deformed roller supports are shown in
Fig. 4, in which 8 is the slope angle at the
roller support. The three non-dimensional m,
n and q of the left span at £=1 are equal to
those of the right span at £€=0, respectively,
as shown in Fig. 4. Thus, the following equa-
tions are obtained by equations (44)-46).

e 2( 8" R+ Or)HFmL=0 cecereeereiiiriniien. 63
s%e7 [ (A g+ 8r) +57%72( 5 "k + 0r) ]
AL =0 ceerreriiiiiii (54)
e[ (6" rt 0 r)-2e"e (8 v+ 8r)]
+RC;ZS'28'1(8’R“/1R)+QL=O ............ (55)

in which the subscripts R and L. mean the
left and right span, respectively.

The three deformations 8, A and ¢ can be
used as the boundary conditions. The rota-

undeformed

my=mg, N.=Ng
Q=qr, P =¢r

left span right span

Fig. 4. Intermediate roller support

tion of cross section ¢ of left span at £=1
and that of right span at £=0 are equal to
each other. Thus, this gives the following
equation.

(B AR) Lm0 orerrrerri (56)

At the roller supports, the horizontal and
vertical components of the displacement be-
tween & and A of left span are equal to those
of right span and this gives the following
equations.

drcosa-Agcos f=-(8cosa+ Acosf) ---67)
drsina + Agsin = §sin@-A;sinff -+« «---- 68

where a 1s 7/2-5.

Above equations (53-68 are the boundary
conditions for the intermediate roller sup-
ports.

At the intermediate hinged supports, the
equations (3-656) are available and no dis-
placement 1s allowable so that the follow-
Ing equations are obtained.

IV. Numerical methods

A FORTRAN computer program was writ-
ten to calculate natural frequencies and
mode shapes. The numerical methods similar
to those described by Lee and Wilson®’, Wil-
son, Lee and Oh!? and Lee, Oh and Mo®
were used to solve the differential equations
(22 and {23 subject to the boundary conditions
of far ends of equations ¢7)-(49 or (0-62) and
that of intermediate supports of equations (3)
-(8). For the sake of completeness, this nu-
merical procedure is summarized as follows.

1. Specify R(=0 or 1), the arch geometry
({, s), the set of three homogeneous bounda-
ry constraints which are either equations @7)-
49 or (0-62, and intermediate supports which
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are either rollers or hinged supports.

2. Consider the sixth order system, equa-
tions (28 and (29, as three initial value prob-
lems whose initial values are the three homo-
geneous boundary constraints £=0, as cho-
sen in step 1. Then assume a trial frequency
parameter C; in which the first trial value is
zero.

3. Using the Runge-Kutta method®, inte-
grate equations (28 and (29 from £=0 to £=1
for the first span. Perform three separate in-
tegrations, one for each of the three chosen
end constraints.

4. Calculate the initial values 8r”, 0r" O »
O0» Ar’, and Ag for second span using equa-
tions (63-68) and integrate equations (28 and
(29 from £=0 to £=1.

5. Repeat step 4 for third, fourth, ..., and
last span.

6. From the Runge-Kutta solution, evalu-
ate at £=1 of the last span, the determinant
D of the coefficient matrix for the chosen set
of three homogeneous boundary conditions. If
D=0, then the trial value of C, is an eigen-
value. If D=0, then increment C, and repeat
step 3-6. '

7. Note the sign of D in each iteration of
processing step 3-6. If D changes sign be-
tween two consecutive trials, then the eigen-
value lies between these last two trial values
of C.

8. Use the Regula-Falsi method® to com-
pute the advanced trial C; based on its two
previous values.

9. Terminate the calculations and print the
value of C; and the corresponding mode sha-
pes when the convergence criteria are met.

The step size used in the Runge-Kutta
method was calculated from equation (34), or

A¢=tan1(dy /d&)tan 1 (dy /dE)esne 6]
where it recall that dz/d€ is a known func-

tion of & for arch geometry. A¢ and Ax(=
{Ax) are depicted in Fig. 1.

V. Numerical resuits and discussion

For the numerical studies herein, suitable
convergence of solutions were obtained for
an increment of A£=1/100. The conver-
gence criterion was that C; solutions obtained
with more crude increment of 1/30 agreed
with those obtained with the 1/100 increment
to within three significant figures. The nu-
merical results in which the lowest few natu-
ral frequencies and corresponding mode
shapes were calculated are now discussed.

Selected studies were made to show the ef-
fect of rotary inertia on the three lowest fre-
quencies of hinged-roller-hinged with f=0.1,
$s=10.~100. and clamped-hinged-clamped
arches with f==0.3 and s=10.~100. Typical
results are shown in Table 1, in which the

Table-1. Effects of rotary inertia on natu-
ral frequency

Frequency parameter, C,
1=1 1=2 1=3
9.361 16.18 18.67
8.915 15.71 16.23
9.173 20.21 30.21
9.056 19.44 30.03
9.121 24.79 36.55
9.076 24.32 34.98
9.106 35.64 36.63
9.085 35.39 36.04
9.107 36.34 45.68
9.089 36.30 45.51
17.14 19.90 24.87
16.67 19.53 22.19
2640 32.48 32.86
25.95 32.17 32.30
27.84 3543 47.10
27.56 35.30 45.76
28.25 36.35 65.31
28.13 36.00 65.17
28.37 36.36 67.13
28.34 36.26 66.78

Geometry of arch s|R

hinged-roller-hinged |10

and f=0.1
20
30

50

104

clamped-hinged

-clamped and {=0.3
20
30

50

100

— O kO O O - OO O OO O
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lowest three natural frequencies were calcu-
lated. From these and other results, the fol-
lowing conclusions were reached. (1) Frequen-
cies(or C; values) are always somewhat
lower with rotary inertia (R=1) than with-
out (R=0); such a result is to be expected.
(2) This frequency depression is accentuated
as the slenderness ratio s decreases from 100
to 10; and also as 1 increases at constant s.
(3) In practical designs, s is generally greater
than 20, for which rotary inertia depresses
the frequencies: by 1% or less for i=1 and
by 5% for 1=2,3.

The numerical results of Figs. 5-9 do, how-

100
hinged-roller-hinged, s=200, R=1
80 4
J
iy
3
% 60
=
g
& 40
o
]
& 20
0 v T T T
0.0 0.1 0.2 0.3 0.4 0.5
Rise to span length ratio, f
Fig. 5. C-f curve(HRH)
120
clamped-hinged-clamped, s=200, i=1
1004
&3
[
5 807
g
e
E 607 \
§
g 407
g )
3
201 &
0

00 01 02 03 04 05
Rise to span length ratio, f

Fig. 6. C--f curve(CHC)

100

hinged-roller-hinged, f=0.2, R=1

80 4

1=4

60 -

404

(I3

Do

Frequency parameter, C

20
1=1

0 50 100 150 200 250 300
Slenderness ratio, S

Fig. 7. C-s curve(HRH)

120

clamped-hinged-clamped, f=0.2, R=1

1004

804

60 -

404

Frequency parameter, C,

204

0 50 100 150 200 250 300
Slenderness ratio, S

Fig. 8. C-s curve(CHC)

hinged-roller-hinged, f =0.2, s=200, R=1

C,=7.365

clamped -hinged-clamped, f=0.2, s=200, R=1

C,=37.06

Fig. 9. Typical example of first mode shapes
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ever, include the effects of rotary inertia, in
which the lowest four natural frequencies
were calculated.

It 1s shown In Fig. 5, for which hinged-roll-
er-hinged arch with s=200 and R=1, that
the frequency parameters Ci(i=1,2,3,4) de-
crease as the rise to span length ratio f is in-
creased, generally. Further, it is observed for

these two span continuous arch configura-
tions that two modes can exist at a single
frequency, a phenomena that was previously
observed only for one span arch configura-
tions by Lee and Wilson?. For these arches,
the second and third modes have the same
frequency at C,=C;=20.86 and {=0.412
(marked A ). And it is clear that the fourth
and fifth(not shown) modes have the same
frequency gince the curve of 1=4 have an In-
flection point at marked []. Also this figure
exhibits the common feature that as the rise
to span length ratio f is increased, the fre-
quency parameters all approach common val-
ues, may be zero, because the arch is more
flexible in the bending vibration in larger f
values. Tt is shown in Fig 6, for which
clamped-hinged-clamped arch with s=200
and R=1, that the third and fourth modes
have the same frequency at C,=C,=70.37
and f=0.0535 (marked O) as discussed in
Fig. 5.

The Figs. 7 and 8 show the effects of the
slenderness ratio s on frequency parameters
C; of' the hinged-roller-hinged and clamped-
hinged-clamped arches, respectively, with f
=0.2 and R=1. In these figures, it i1s found
that the frequency parameters C; increase,
and In most cases approach a horizontal
asymptote, as the slenderness ratio s is in-
creased. Also, the phenomena that two
modes can exist at a single frequency are
shown in these figures.

The typical examples of the first mode
shapes of hinged-roller-hinged and clamped-
hinged-clamped -arches with =0.2, s=200
and R=1, in which both mode shapes are

—60—

anti-symmetric modes. Since the arches pre-
sented In this study are symmetric, the mode
shapes are either symmetric or anti-symmet-
ric modes. Even though not shown in this
paper, the symmetric mode shapes were ex-
isted in the numerical examples of this study.

VI. Experimental results and dis-
cussion

Two laboratory-scale parabolic arches, a
hinged-roller-hinged and a clamped-hinged-
clamped configuration, were designed and
tested to determine their lowest few natural
frequencies. The main purpose of these ex-
periments was to validate the proposed math-
ematical model and typical numerical solu-
tions predicted herein.

The experimental models were bent from
steel bar stock to the parabolic shape with
(x,y) co-ordinates described by equation (3§.
The geometric arch parameters of one span
were. /=30 cm, h=7.5 cm with a width and
thickness for rectangular cross-section of 3
cm and 0.2 cm, respectively(A=0.6 cm?, r=
0.0577 cm). The corresponding non-dimen-
sional arch parameters were thus f=h//=0.
25 and s=//r=520. The frequencies C; are
calculated using the material properties of
steel: a Young's modulus E of 2.0x107 N/
cm? and mass density of 7.85x 1075 N-sec?/
cm?, for which y, the mass per unit length of
arc, is 4.71 x 105 N-sec2/cm?. The predicted
frequencies for the experimental arches are
thus f,=32.4C, rad/s=5.15C; Hz from equa-
tion (14), and these numerical values are listed
in Table 2.

The experimental setup is shown in Fig.
10. The procedures for measuring frequen-
cies and the methods for reducing data*) are
summarized. At each support, the arch was
either hinged or clamped or roller to a steel
connection attached to a concrete block.
Each block "floated” on a soft rubber pad to
achieve vibration isolation. In these experi-
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Reference points

,/—'—\

Clamped
/hinged

Accelerometer A

|-~ Plexiglass blocks —{I

f—~+— Concrete blocks —4—

. Rubber pads ___

TITTTTTTITITIITITI YT I
(b)
ACCELEROMETER g SIGNAL
INPUTS ANALYZER
HARD DISK PLOTTER
Fig. 10. Schematic drawings of : (a) typical experimental setup
: (b) modal analysis system
Table-2. Comparison of computed and mea- R e e e
sured results(£=0.25, s=520)
. Theory  |Experiment .
End constraint| i C TiED | D) % Deviation _
clamped 1[32.56(167.7] 157. -6.4 =
-hinged 2|41.42|213.3| 194. | -9.0 3| ]
~clamped |3 |74.27|382.5| 347. | -9.3 2
4|85.99/442.8] 380. | -14.2 £
hinged-roller | 1 |6.465/33.29| 30.6 -8.1 - 1
-hinged 2128.17|145.1) 127. -12.5
3132.56{167.7| 146. -12.9 e K/\ V.
4166.15{340.7| 262. -23.1 0 500
Frequency(Hz)
Fig. 11. Transfer function of acceleration

ments, 18 reference points were chosen along
the arch axis. As shown in Fig. 10, a minia-

for the clamped-hinged-clamped

arch

ture accelerometer sensitive only to radial ac-

celeration(in-plane bending vibration) was
affixed to the underside of the arch at an in-
terior reference point. A small hammer fitted
with a miniature accelerometer sensitive to
accelerations in the direction of impact, was
used to strike each of the reference points,
excluding the points of support. The accelera-
tion time histories measured at each strike
were received by a signal analyzer(Model

SD390, Scientific Atlanta Corp.) and then
processed by a microcomputer using a fast
Fourier transform(FFT) analyzer. Using all
of these data, the frequency dependent trans-
fer function, defined as the ratio of the mag-
nitude of the FFT of the arch acceleration to
the magnitude of the FFT of the hammer ac-
celeration.

Shown in Fig. 11 is the transfer function

—61—
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of the clamped-hinged-clamped models. The
frequencies for the major peaks of these plots
are listed in Table 2. For the clamped-hinged
-clamped arch, the four measured frequen-
cles that occurred at first, second, third and
fourth peak of the transfer function, Fig. 11,
were 157, 194, 347 and 380 Hz, respectively.
These four frequencies average about 9.7%
less than the predicted values as shown in
Table 2. Natural damping present in the ex-
perimental system but absent in the theoreti-
cal model contributes to the depression of the
measured frequencies. The inevitable loose-
ness of the end hinges and the difficulty in
maintaining In-plane hammer strikes un-
doubtedly lead to out-of-plane vibrations,
“noise” in the transfer function.

For the hinged-roller-hinged arch, the
ideal end constraints were more difficult to
achieve and this is reflected in the "crude’
transfer function. As shown in Table 2, the
measured frequencies are within 23% of the
predicted values.

As discussed above, the experimental mea-
sures of frequencies for two laboratory-scale
arch models serve to validate the theoretical
results.

VII. Conclusions

By deriving the boundary conditions of in-
termediate supports of the multispan continu-
ous arches, the numerical methods for calcu-
lating the free vibration, in-plane frequencies
and mode shapes are found to he especially
robust and reliable over a wide and practical
range of arch parameters. In the numerical
examples, the parabolic arches are consid-
ered and the hinged-roller-hinged and clamp-
ed—hinged-clampea support constraints are
chosen. As the numerical results, the effects
of rotary inertia and non-dimensional arch
parameters on the natural frequencies are re-
ported in tables and figures. Also experimen-
tal measures of frequenties for two laborato-

ry-scale arch models serve to validate the
theoretical results.
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