With the launch of Artificial Intelligence(AI)-based intelligent products on the market, innovative changes are taking place not only in business but also in consumers' daily lives. Intelligent products have the potential to realize technology differentiation and increase market competitiveness through advanced functions of artificial intelligence. However, there is no new product development methodology that can sufficiently reflect the characteristics of artificial intelligence for the purpose of developing intelligent products with high market acceptance. This study proposes a KANO-QFD integrated model as a methodology for intelligent product development. As a specific example of the empirical analysis, the types of consumer requirements for hair loss prediction and treatment device were classified, and the relative importance and priority of engineering characteristics were derived to suggest the direction of intelligent medical product development. As a result of a survey of 130 consumers, accurate prediction of future hair loss progress, future hair loss and improved future after treatment realized and viewed on a smartphone, sophisticated design, and treatment using laser and LED combined light energy were realized as attractive quality factors among the KANO categories. As a result of the analysis based on House of Quality of QFD, learning data for hair loss diagnosis and prediction, micro camera resolution for scalp scan, hair loss type classification model, customized personal account management, and hair loss progress diagnosis model were derived. This study is significant in that it presented directions for the development of artificial intelligence-based intelligent medical product that were not previously preceded.
Journal of the Korean Institute of Intelligent Systems
/
v.15
no.2
/
pp.236-244
/
2005
In this study, we introduce a new topology of Fuzzy Polynomial Neural Networks(FPNN) that is based on fuzzy relation and evolutionally optimized Multi-Layer Perceptron, discuss a comprehensive design methodology and carry out a series of numeric experiments. The construction of the evolutionally optimized FPNN(EFPNN) exploits fundamental technologies of Computational Intelligence. The architecture of the resulting EFPNN results from a synergistic usage of the genetic optimization-driven hybrid system generated by combining rule-based Fuzzy Neural Networks(FNN) with polynomial neural networks(PNN). FNN contributes to the formation of the premise part of the overall rule-based structure of the EFPNN. The consequence part of the EFPNN is designed using PNN. As the consequence part of the EFPNN, the development of the genetically optimized PNN(gPNN) dwells on two general optimization mechanism: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the EFPNN, the models are experimented with the use of several representative numerical examples. A comparative analysis shows that the proposed EFPNN are models with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.
Speech recognition technology is being combined with deep learning and is developing at a rapid pace. In particular, voice recognition services are connected to various devices such as artificial intelligence speakers, vehicle voice recognition, and smartphones, and voice recognition technology is being used in various places, not in specific areas of the industry. In this situation, research to meet high expectations for the technology is also being actively conducted. Among them, in the field of natural language processing (NLP), there is a need for research in the field of removing ambient noise or unnecessary voice signals that have a great influence on the speech recognition recognition rate. Many domestic and foreign companies are already using the latest AI technology for such research. Among them, research using a convolutional neural network algorithm (CNN) is being actively conducted. The purpose of this study is to determine the non-voice section from the user's speech section through the convolutional neural network. It collects the voice files (wav) of 5 speakers to generate learning data, and utilizes the convolutional neural network to determine the speech section and the non-voice section. A classification model for discriminating speech sections was created. Afterwards, an experiment was conducted to detect the non-speech section through the generated model, and as a result, an accuracy of 94% was obtained.
Park, Jeongmook;Sim, Woodam;Kim, Kyoungmin;Lim, Joongbin;Lee, Jung-Soo
Korean Journal of Remote Sensing
/
v.38
no.6_1
/
pp.1407-1422
/
2022
This study was conducted to classify tree species and assess the classification accuracy, using SE-Inception, a classification-based deep learning model. The input images of the dataset used Worldview-3 and GeoEye-1 images, and the size of the input images was divided into 10 × 10 m, 30 × 30 m, and 50 × 50 m to compare and evaluate the accuracy of classification of tree species. The label data was divided into five tree species (Pinus densiflora, Pinus koraiensis, Larix kaempferi, Abies holophylla Maxim. and Quercus) by visually interpreting the divided image, and then labeling was performed manually. The dataset constructed a total of 2,429 images, of which about 85% was used as learning data and about 15% as verification data. As a result of classification using the deep learning model, the overall accuracy of up to 78% was achieved when using the Worldview-3 image, the accuracy of up to 84% when using the GeoEye-1 image, and the classification accuracy was high performance. In particular, Quercus showed high accuracy of more than 85% in F1 regardless of the input image size, but trees with similar spectral characteristics such as Pinus densiflora and Pinus koraiensis had many errors. Therefore, there may be limitations in extracting feature amount only with spectral information of satellite images, and classification accuracy may be improved by using images containing various pattern information such as vegetation index and Gray-Level Co-occurrence Matrix (GLCM).
Makeup is the most common way to improve a person's appearance. However, since makeup styles are very diverse, there are many time and cost problems for an individual to apply makeup directly to himself/herself.. Accordingly, the need for makeup automation is increasing. Makeup transfer is being studied for makeup automation. Makeup transfer is a field of applying makeup style to a face image without makeup. Makeup transfer can be divided into a traditional image processing-based method and a deep learning-based method. In particular, in deep learning-based methods, many studies based on Generative Adversarial Networks have been performed. However, both methods have disadvantages in that the resulting image is unnatural, the result of makeup conversion is not clear, and it is smeared or heavily influenced by the makeup style face image. In order to express the clear boundary of makeup and to alleviate the influence of makeup style facial images, this study divides the makeup area and calculates the loss function using HoG (Histogram of Gradient). HoG is a method of extracting image features through the size and directionality of edges present in the image. Through this, we propose a makeup transfer network that performs robust learning on edges.By comparing the image generated through the proposed model with the image generated through BeautyGAN used as the base model, it was confirmed that the performance of the model proposed in this study was superior, and the method of using facial information that can be additionally presented as a future study.
KIPS Transactions on Software and Data Engineering
/
v.12
no.2
/
pp.59-76
/
2023
Since the COVID-19 era, the rise in apartment prices has been unconventional. In this uncertain real estate market, price prediction research is very important. In this paper, a model is created to predict the actual transaction price of future apartments after building a vast data set of 870,000 from 2015 to 2020 through data collection and crawling on various real estate sites and collecting as many variables as possible. This study first solved the multicollinearity problem by removing and combining variables. After that, a total of five variable selection algorithms were used to extract meaningful independent variables, such as Forward Selection, Backward Elimination, Stepwise Selection, L1 Regulation, and Principal Component Analysis(PCA). In addition, a total of four machine learning and deep learning algorithms were used for deep neural network(DNN), XGBoost, CatBoost, and Linear Regression to learn the model after hyperparameter optimization and compare predictive power between models. In the additional experiment, the experiment was conducted while changing the number of nodes and layers of the DNN to find the most appropriate number of nodes and layers. In conclusion, as a model with the best performance, the actual transaction price of apartments in 2021 was predicted and compared with the actual data in 2021. Through this, I am confident that machine learning and deep learning will help investors make the right decisions when purchasing homes in various economic situations.
Journal of Korea Society of Industrial Information Systems
/
v.28
no.5
/
pp.1-14
/
2023
Soybeans are one of the world's top five staple crops and a major source of plant-based protein. Due to their susceptibility to climate change, which can significantly impact grain production, the National Agricultural Science Institute is conducting research on crop phenotypes through growth analysis of various soybean varieties. While the process of capturing growth progression photos of soybeans is automated, the verification, recording, and analysis of growth stages are currently done manually. In this paper, we designed and trained a YOLOv5s model to detect soybean leaf objects from image data of soybean plants and a Convolution Neural Network (CNN) model to judgement the unfolding status of the detected soybean leaves. We combined these two models and implemented an algorithm that distinguishes layers based on the coordinates of detected soybean leaves. As a result, we developed a program that takes time-series data of soybeans as input and performs growth analysis. The program can accurately determine the growth stages of soybeans up to the second or third compound leaves.
Park, Chul-Yong;Won, Jeong-Ae;Kim, Sungki;Choi, Hee;Paik, Seoung-Hey
Journal of the Korean Chemical Society
/
v.64
no.1
/
pp.30-37
/
2020
The purpose of this study was to identify the problems faced by students in sub-microscopic representation of acid-base reactions. Herein, we selected 30 students of 12th grade science classes, who had studied various acid-base models. In order to investigate the sub-microscopic representation ability of the students, we developed nine items related to various contexts, such as one type of solute and solvent, two types of solutes and solvent, cases with water as solvent or with nonaqueous solvents. For all items, we consistently observed lack of concept of chemical change. In context of aqueous and nonaqueous solutions, the frequency of lack of concept of chemical bonding was high if ammonia was the solute or solvent. Moreover, the frequency of lack of concept related to the degree of electrolytic dissociation was high. Therefore, chemistry teachers should understand that students' ability to sub-microscopic representation of acid-base reactions can be enhanced by analyzing the difficulties faced by the students in solving diverse acid-base problems.
This study investigated what kind of informal knowledge is emergent and what role informal knowledge play in process of solving 2-digit by 2-digit multiplication task. The data come from 4 times interviews with a 3th grade student who had not yet received regular school education regarding 2-digit by 2-digit multiplication. And the data involves the student's activity paper, the characteristics of action and the clue of thinking process. Findings from these interviews clarify the child's informal knowledge to modeling strategy, doubling strategy, distributive property, associative property. The child formed informal knowledge to justify and modify her conjecture of the algorithm.
Proceedings of the Korea Contents Association Conference
/
2009.05a
/
pp.59-65
/
2009
An Edutainment Contents help the learners to recognize the problems effectively, grasp and classify important information needed to solve the problems and convey the contents of what they have learned. Owing not only to this game-like fun but also to the educational effect, The Edutainment contents can be usefully applied to education and training in the areas of scientific technology and industrial technology. This study proposes the Edutainment that users can apply to biotechnology by using intuitive multi-modal interfaces. In this study, a stereoscopic monitor is used to make three dimensional molecular structures, and multi-modal interface is used to efficiently control. Based on the system, this study easily solved the docking simulation function, which is one of the important experiments, by applying these game factors. For this, we suggested the level-up concept as a game factor that depends on numbers of objects and users.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.