• Title/Summary/Keyword: 결함확률

Search Result 144, Processing Time 0.025 seconds

TFT-LCD Defect Blob Detection based on Sequential Defect Detection Method (순차적 결함 검출 방법에 기반한 TFT-LCD 결함 영역 검출)

  • Lee, Eunyoung;Park, Kil-Houm
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.2
    • /
    • pp.73-83
    • /
    • 2015
  • This paper proposes a TFT-LCD defect blob detection algorithm using the sequential defect detection method. First, for every pixel, a defect possibility is determined by the intensity difference and the defect candidates are detected according to the sequential defect detection method. For detected candidate pixels, the defect probability that indicates a potential included in the defect according to the each step. By applying the morphological operation, blobs are comprised of the detected candidates and the defect blobs are detected using the defect possibility of blobs. The validity of the proposed method was demonstrated a simulated image and also then it was tested a real TFT-LCD image. By the experimental results, the proposed method is very effective in TFT-LCD detect detection.

Machine Learning-based Multiple Fault Localization with Bayesian Probability (베이지안 확률을 적용한 기계학습 기반 다중 결함 위치 식별 기법)

  • Song, Jihyoun;Kim, Jeongho;Lee, Eunseok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.151-154
    • /
    • 2017
  • 소프트웨어의 개발과정 중 결함을 제거하는 작업인 디버깅을 위해서는 가장 먼저 그 결함의 정확한 위치를 찾아야한다. 이 작업은 많은 시간이 소요되며, 이 시간을 단축시키기 위한 결함 위치 식별 기법들이 소개되었다. 많은 기법들 중 프로그램 커버리지 정보를 학습하여 규칙을 분석하는 인공신경망 기반 선행 연구가 있다. 이를 기반으로 본 논문에서는 문장들 간의 관계를 추가적으로 파악하여 학습 데이터로 사용하는 기법을 제안한다. 특정 문장이 항상 지나는 테스트케이스들 중 나머지 다른 문장들이 지나는 테스트케이스의 비율을 통해 문장들 간의 관계를 나타낸다. 해당 비율을 계산하기 위해 조건부 확률인 베이지안 확률을 사용한다. 베이지안 확률을 통해 얻은 문장들의 관계에 따라 인공신경망 내에서 의심도를 결정하는 웨이트(weight)가 기존 기법과는 다르게 학습된다. 이 차이는 문장들의 의심도를 조정하며, 결과적으로 다중 결함 위치 식별의 정확도를 향상시킨다. 본 논문에서 제안한 기법을 이용하여 실험한 결과, Tarantula 대비 평균 39.8%, 기존 역전파 인공신경망(BPNN) 기반 기법 대비 평균 60.5%의 정확도 향상이 있었음을 확인할 수 있다.

  • PDF

Bayesian Network-based Probabilistic Management of Software Metrics for Refactoring (리팩토링을 위한 소프트웨어 메트릭의 베이지안 네트워크 기반 확률적 관리)

  • Choi, Seunghee;Lee, Goo Yeon
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1334-1341
    • /
    • 2016
  • In recent years, the importance of managing software defects in the implementation stage has emerged because of the rapid development and wide-range usage of intelligent smart devices. Even if not a few studies have been conducted on the prediction models for software defects, their outcomes have not been widely shared. This paper proposes an efficient probabilistic management model of software metrics based on the Bayesian network, to overcome limits such as binary defect prediction models. We expect the proposed model to configure the Bayesian network by taking advantage of various software metrics, which can help in identifying improvements for refactoring. Once the source code has improved through code refactoring, the measured related metric values will also change. The proposed model presents probability values reflecting the effects after defect removal, which can be achieved by improving metrics through refactoring. This model could cope with the conclusive binary predictions, and consequently secure flexibilities on decision making, using indeterminate probability values.

Stochastic Imperfection Sensitivity Analyses of Stiffened Cylindrical Shells with Geometric Random Imperfection (불확정적인 초기형상결함을 갖는 보강 원통형 쉘의 확률론적 초기결함 민감도해석)

  • D.K. Kim;Y.S. Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.142-154
    • /
    • 1994
  • In this paper, stochastic imperfection sensitivity analyses of stiffened cylindrical shells under static load are presented. Multimode formulation is performed for the buckling load calculation based on the Donnell's theory and Galerkin approximation. Random imperfection field theory and response surface method are combined with deterministic bucking analysis scheme to perform stochastic imperfection sensitivity analyses of stiffened cylindrical shells considering random geometric imperfection. From the characteristics of probabilistic bucking load, the relation between reliability index and safety parameter can be obtained in addition to the relation between load and reliability index. Those results can be used to determine the range of required safety parameter and acceptable imperfection.

  • PDF

A Probabilistic Detection Algorithm for Noiseless Group Testing (무잡음 그룹검사에 대한 확률적 검출 알고리즘)

  • Seong, Jin-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1195-1200
    • /
    • 2019
  • This paper proposes a detection algorithm for group testing. Group testing is a problem of finding a very small number of defect samples out of a large number of samples, which is similar to the problem of Compressed Sensing. In this paper, we define a noiseless group testing and propose a probabilistic algorithm for detection of defective samples. The proposed algorithm is constructed such that the extrinsic probabilities between the input and output signals exchange with each other so that the posterior probability of the output signal is maximized. Then, defective samples are found in the group testing problem through a simulation on the detection algorithm. The simulation results for this study are compared with the lower bound in the information theory to see how much difference in failure probability over the input and output signal sizes.

Fault Detection of Small Turbojet Engine for UAV Using Unscented Kalman Filter and Sequential Probability Ratio Test (무향칼만필터와 연속확률비 평가를 이용한 무인기용 소형제트엔진의 결함탐지)

  • Han, Dong Ju
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.22-29
    • /
    • 2017
  • A study is performed for the effective detection method of a fault which is occurred during operation in a small turbojet engine with non-linear characteristics used by unmanned air vehicle. For this study the non-linear dynamic model of the engine is derived from transient thermodynamic cycle analysis. Also for inducing real operation conditions the controller is developed associated with unscented Kalman filter to estimate noises. Sequential probability ratio test is introduced as a real time method to detect a fault which is manipulated for simulation as a malfunction of rotational speed sensor contaminated by large amount of noise. The method applied to the fault detection during operation verifies its effectiveness and high feasibility by showing good and definite decision performances of the fault.

Classification of Surface Defects on Cold Rolled Strips by Probabilistic Neural Networks (확률신경회로망에 의한 냉연 강판 표면결함의 분류)

  • Song, S.J.;Kim, H.J.;Choi, S.H.;Lee, J.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.3
    • /
    • pp.162-173
    • /
    • 1997
  • Automatic on-line surface inspection systems have been applied for monitoring a quality of steel strip surfaces. One of the important issues in this application is the performance of on-line defect classifiers. Rule-based classification table methods which are conventionally used for this purpose have been suffered from their low performances. In this work, probabilistic neural networks and the enhanced classification tables which are newly proposed here are applied as alternative on-line classifiers to identify types of surface defects on cold rolled strips. Probabilistic neural networks have shown very excellent performance for classification of surface defects.

  • PDF

Pattern Classification of Hard Disk Defect Distribution Using Gaussian Mixture Model (가우시안 혼합 모델을 이용한 하드 디스크 결함 분포의 패턴 분류)

  • Jun, Jae-Young;Kim, Jeong-Heon;Moon, Un-Chul;Choi, Kwang-Nam
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.482-486
    • /
    • 2008
  • 본 논문에서는 하드 디스크 드라이브(Hard Disk Drive, HDD) 생산 공정 과정에서 발생할 수 있는 불량 HDD의 결함 분포에 대해서 패턴을 자동으로 분류해주는 기법을 제시한다. 이를 위해서 표준 패턴 클래스로 분류되어 있는 불량 HDD의 각 클래스의 확률 모델을 GMM(Gaussian Mixture Model)로 가정한다. 실험은 전문가에 의해 분류된 실제 HDD 결함 분포로부터 5가지의 특징 값들을 추출한 후, 결함 분포의 클래스를 표현할 수 있는 GMM의 파라미터(Parameter)를 학습한다. 각 모델의 파라미터를 추정하기 위해 EM(Expectation Maximization) 알고리즘을 사용한다. 학습된 GMM의 분류 테스트는 학습에 사용되지 않은 HDD 결함 분포에서 5가지의 특징 값을 입력 값으로 추정된 모델들의 파라미터 값에 의해 사후 확률을 구한다. 계산된 확률 값 중 가장 큰 값을 갖는 모델의 클래스를 표준 패턴 클래스로 분류한다. 그 결과 제시된 GMM을 이용한 HDD의 패턴 분류의 결과 96.1%의 정답률을 보여준다.

  • PDF

Adaption of Neural Network Algorithm for Pattern Recognition of Weld Flaws (용접결함 패턴인식을 위한 신경망 알고리즘 적용)

  • Kim, Chang-Hyun;Yu, Hong-Yeon;Hong, Sung-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.65-72
    • /
    • 2007
  • In this study, we used nondestructive test based on ultrasonic test as inspection method and compared backpropagation neural network(BPNN) with probabilistic neural network(PNN) as pattern recognition algorithm of weld flaws. For this purpose, variables are applied the same to two algorithms. Where, feature variables are zooming flaw signals of reflected whole signals from weld flaws in time domain. Through this process, we compared advantages/ disadvantages of two algorithms and confirmed application methods of two algorithms.

The Comparative Software Reliability Model of Fault Detection Rate Based on S-shaped Model (S-분포형 결함 발생률을 고려한 NHPP 소프트웨어 신뢰성 모형에 관한 비교 연구)

  • Kim, Hee Cheul;Kim, Kyung-Soo
    • Convergence Security Journal
    • /
    • v.13 no.1
    • /
    • pp.3-10
    • /
    • 2013
  • In this paper, reliability software model considering fault detection rate based on observations from the process of software product testing was studied. Adding new fault probability using the S-shaped distribution model that is widely used in the field of reliability problems presented. When correcting or modifying the software, finite failure non-homogeneous Poisson process model was used. In a software failure data analysis considering the time-dependent fault detection rate, the parameters estimation using maximum likelihood estimation of failure time data and reliability make out.